3 resultados para Interactional and collaborative process of knowledge construction

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RTKs-mediated signaling systems and the pathways with which they interact (e.g., those initiated by G protein-mediated signaling) involve a highly cooperative network that sense a large number of cellular inputs and then integrate, amplify, and process this information to orchestrate an appropriate set of cellular responses. The responses include virtually all aspects of cell function, from the most fundamental (proliferation, differentiation) to the most specialized (movement, metabolism, chemosensation). The basic tenets of RTK signaling system seem rather well established. Yet, new pathways and even new molecular players continue to be discovered. Although we believe that many of the essential modules of RTK signaling system are rather well understood, we have relatively little knowledge of the extent of interaction among these modules and their overall quantitative importance.

My research has encompassed the study of both positive and negative signaling by RTKs in C. elegans. I identified the C. elegans S0S-1 gene and showed that it is necessary for multiple RAS-mediated developmental signals. In addition, I demonstrated that there is a SOS-1-independent signaling during RAS-mediated vulval differentiation. By assessing signal outputs from various triple mutants, I have concluded that this SOS-1-independent signaling is not mediated by PTP-2/SHP-2 or the removal of inhibition by GAP-1/ RasGAP and it is not under regulation by SLI-1/Cb1. I speculate that there is either another exchange factor for RASor an as yet unidentified signaling pathway operating during RAS-mediated vulval induction in C. elegans.

In an attempt to uncover the molecular mechanisms of negative regulation of EGFR signaling by SLI-1/Cb1, I and two other colleagues codiscovered that RING finger domain of SLI-1 is partially dispensable for activity. This structure-function analysis shows that there is an ubiquitin protein ligase-independent activity for SLI-1 in regulating EGFR signaling. Further, we identified an inhibitory tyrosine of LET-23/ EGFR requiring sli-1(+)for its effects: removal of this tyrosine closely mimics loss of sli-1 but not loss of other negative regulator function.

By comparative analysis of two RTK pathways with similar signaling mechanisms, I have found that clr-1, a previously identified negative regulator of egl-15 mediated FGFR signaling, is also involved in let-23 EGFR signaling. The success of this approach promises a similar reciprocal test and could potentially extend to the study of other signaling pathways with similar signaling logic.

Finally, by correlating the developmental expression of lin-3 EGF to let-23 EGFR signaling activity, I demonstrated the existence of reciprocal EGF signaling in coordinating the morphogenesis of epithelia. This developmental logic of EGF signaling could provide a basis to understand a universal mechanism for organogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.

In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.

As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.

Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.

More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.

The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.

Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.