2 resultados para Insulating layers

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:

1. Embedded Epitaxy

This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.

2. Barrier Controlled PNPN Laser Diode

It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.

3. Injection Lasers on Semi-Insulating Substrates

GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.

Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.

Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.