4 resultados para Insect chemosterilization.
em CaltechTHESIS
Resumo:
Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.
Resumo:
Studies on Hymenopteran Parasitism of Drosophila
Flies of the genus Drosophila are subject to attack by a number of parasitic forms. Sturtevant (1921) has listed records of parasitism by protozoa (Leptomonas), fungi (Muiaria and Stigmatomyces), nematodes, mites and v~rious hymenoptera. According to Sturtevant, Perkins (1913) has bred at least five species of hymenoptera, belonging to the proctotrupoid, cynipoid and chalcidoid groups, upon Drosophiline flies. H.S. Smith has bred an unidentified proctotrupoid and a chalcidoid, Pachy crepoideus dubius Ashmead* from both Drosophila melanogaster ani D. hydei. Kieffer ( 1913) has described three species of hymenoptera from Africa collected by Silvestri and stated by him to be parasitic on Drosophila, species not given. They are Trichopria (Planopria) rhopalica (Diapriidae), Ashmeadopria drosophilae (Diapriidae), and the insect which forms the subject matter of the present investigation, Eucoila drosophilae (Figitidae).
There are in addition a number of predacious enemies among wasps, spiders, flies and beetles.
The present account is concerned with parasitism of various species of Drosophila by Eucoila drosophilae Kieff. The wasps were found b y Dr. w. P. Spencer who exposed traps in an effort to collect Drosophila at Long Lake, Ohio, in Sept. 1934 . Drosophila larvae from the trap gave a large number of pupae from which wasps emerged in considerable proportions. Since that time stock s have been maintained in culture on Drosophila melanogaster.
Resumo:
The alkali metal salts of 1,5-hexadien-3-ols undergo accelerated Cope rearrangements to the enolates of δ, ε-unsaturated carbonyl compounds. The generality of the rearrangement was investigated in numerous systems, particularly acyclic cases, and the effect of changes in substituents, counterions, solvents, and geometrical structures were noted and discussed. Applications of this methodology in synthesis included the synthesis of the insect pheromone frontalin, the preparation of selectively monoprotected 1,6-dicarbonyl compounds from 4-methoxy- and 4-phenylthio-1,5-hexadien-3-ols, and the construction of complex ring structures such as a D-homo-estratetraenone derivative.
Thermochemical estimates of the energetics of anionpromoted alkoxide fragmentations were made, and in all cases heterolytic cleavage was favored over hemolytic cleavage by 8.5-53 kcal/mol. The implication of these and other thermochemical estimates is that the anionic oxy-Cope rearrangement occurs via a concerted mechanism rather than a dissociation-recombination process. The concepts of anion-induced bond weakening were successfully applied to an accelerated [1,3]-shift of a dithiane fragment in a cyclohexenyl system. Trapping experiments demonstrated that > 85% of the [1,3]-shift occurred within a solvent cage. Attempts at promoting an intramolecular ene reaction using the potassium salts of 2,7-octadien-1-o1 and 2,8-nonadien-1-o1 were unsuccessful. A general review of anion-promoted bond reorganizations and anion substituent effects is also presented.
Resumo:
Part I
Phenol oxidase is the enzyme responsible for hardening and pigmentation of the insect cuticle. In Drosophila, phenol oxidase is a latent enzyme. Enzyme activity is produced by the interaction of a number of protein components. A minimal activation scheme consisting of six protein components, designated Pre S, S activator, S, P. P' and Ʌ1 is described. Quantitative assays have been developed for the S activator, S, P and P' proteins and these components have been partially purified. Experiments describing the interactions of the six components have been conducted and a model for the activation of phenol oxidase in a minimal system is proposed. Possible mechanisms of the reactions between the constituents of the activating system and potential regulatory mechanisms involved in phenol oxidase production and function are discussed.
Part II
A method has been developed for the partial purification of insulin from human serum. A procedure for the determination of the electrophoretic mobility of serum insulin on polyacrylamide gels is described. An electrophoretic analysis of insulin isolated from a normal subject is reported and in addition to a major band, the existence of a number of minor bands of immunoreactive insulin is described. A comparison of the electrophoretic patterns of insulin isolated from normal and diabetic subjects was carried out and indications that differences between them may occur are reported.