2 resultados para Infinite time
em CaltechTHESIS
Resumo:
An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.
The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.
The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.
This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.
Resumo:
The stability of a fluid having a non-uniform temperature stratification is examined analytically for the response of infinitesimal disturbances. The growth rates of disturbances have been established for a semi-infinite fluid for Rayleigh numbers of 103, 104, and 105 and for Prandtl numbers of 7.0 and 0.7.
The critical Rayleigh number for a semi-infinite fluid, based on the effective fluid depth, is found to be 32, while it is shown that for a finite fluid layer the critical Rayleigh number depends on the rate of heating. The minimum critical Rayleigh number, based on the depth of a fluid layer, is found to be 1340.
The stability of a finite fluid layer is examined for two special forms of heating. The first is constant flux heating, while in the second, the temperature of the lower surface is increased uniformly in time. In both cases, it is shown that for moderate rates of heating the critical Rayleigh number is reduced, over the value for very slow heating, while for very rapid heating the critical Rayleigh number is greatly increased. These results agree with published experimental observations.
The question of steady, non-cellular convection is given qualitative consideration. It is concluded that, although the motion may originate from infinitesimal disturbances during non-uniform heating, the final flow field is intrinsically non-linear.