13 resultados para Hydrotalcite-like Compounds

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.

Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group G → Homeo_+(S^1) is a Möbius-like group if every element of G is conjugate in Homeo(S^1) to a Mobius transformation. Our main result is: given a Mobus like like group G which has at least one global fixed point, G is conjugate in Homeo(S^1) to a Möbius group if and only if the limit set of G is all of S^1 . Moreover, we prove that if the limit set of G is not SI, then after identifying some closed subintervals of S^1 to points, the induced action of G is conjugate to an action of a Möbius group.

We also show that the above result does not hold in the case when G has no global fixed points. Namely, we construct examples of Möbius-like groups with limit set equal to S^1, but these groups cannot be conjugated to Möbius groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanocene metallacyclobutanes show a wide variety of reactivites with organic and inorganic reagents. Their reactions include methylene transfer to organic carbonyls, formation of enolates, electron transfer from activated alkyl chlorides, olefin metathesis, ring opening polymerization. Recently, preparations of heterobinuclear µ-methylene complexes were reported. In this thesis, mechanistic, synthetic, and structural studies of the heterobinuclear µ-methylene complexes will be described. Also, the reaction of titanocene methylidene trimethylphosphine complex with alkene sulfide and styrene sulfide will be presented.

Heterobinuclear µ-methylene-µ-methyl complexes C_(p2)Ti(µ-CH_2)( µ-CH_3)M(1,5-COD) have been prepared (M = Rh, Ir). X-ray crystallography showed that the methyl group of the complex was bonded to the rhodium and bridges to the titanium through an agostic bond. The ^(1)H,^(13)CNMR, IR spectra along with partial deuteration studies supported the structure in both solution and solid state. Activation of the agostic bond is demonstrated by the equilibration of the µ-CH_3 and µ-CH_2 groups. A nonlinear Arrhenius plot, an unusually large kinetic isotope effect (24(5)), and a large negative activation entropy (-64(3)eu) can be explained by the quantum-mechanical tunneling. Calculated rate constants with Bell-type barrier fitted well with the observed one. This equilibration was best explained by a 4e-4c mechanism (or σ bond metathesis) with the character of quantum-mechanical tunneling.

Heterobinuclear µ-methylene-µ-phenyl complexes were synthesized. Structural study of C_(p2)Ti(µ-CH_(2))(µ-p-Me_(2)NC_(6)H_(4))Rh(l,5-COD) showed that the two metal atoms are bridged by the methylene carbon and the ipso carbon of the p-N,N-dimethylarninophenyl group. The analogous structure of C_(p2))Ti(µ-CH_(2))(µ-o-MeOC_(6)H_(4))Rh(1,5-COD) has been verified by the differential NOE. The aromaticity of the phenyl group observed by ^(1)H NMR, was confirmed by the comparison of the C-C bond lengths in the crystallographic structure. The unusual downfield shifts of the ipso carbon in the ^(13)C NMR are assumed to be an indication of the interaction between the ipso carbon and electron-deficient titanium.

Titanium-platinum heterobinuclear µ-methylene complexes C_(p2)Ti(µ-CH_(2))(µ -X)Pt(Me)(PM_(2)Ph) have been prepared (X= Cl, Me). Structural studies indicate the following:(1) the Ti-CH2 bond possesses residual double bond character, (2) there is a dative Pt→Ti interaction which may be regarded as a π back donation from the platinum atom to the 'Ti=CH_(2)'' group, and (3) the µ-CH_3 group is bound to the titanium atom through a three-center, two-electron agostic bond.

Titanocene (η^(2)-thioformaldehyde)•PMe_3 was prepared from C_(p2)Ti=CH_(2)•PMe_3 and sulfur-containing organic compounds (e.g. alkene sulfide, triphenylphosphine sulfide) including elemental sulfur. Mechanistic studies utilizing trans-styrene sulfide-d_1 suggested the stepwise reaction to explain equimolar mixture of trans- and cis-styrene-d_1 as by-products. The product reacted with methyl iodide to produce cationic titanocene (η_(2)-thiomethoxymethyl) complex. Complexes having less coordinating anion like BF_4 or BPh_4 could be obtained through metathesis. Together with structural analyses, the further reactivities of the complexes have been explored.

The complex C_(p2)TiOCH_(2)CH(Ph)CH_2 was prepared from the compound C_(p2)Ti=CH_(2)-PMe_3 and styrene oxide. The product was characterized with ^(1)H-^(1)H correlated 2-dimensional NMR, selective decoupling of ^(1)H NMR, and differential NOE. Stereospecificity of deuterium in the product was lost when trans-styrene oxide-d_1 was allowed to react. Relative rates of the reaction were measured with varying substituents on the phenyl ring. Better linearity (r = -0.98, p^(+) = -0.79) was observed with σ_(p)^(+)than σ(r = -0.87, p = -1.26). The small magnitude of p^+ value and stereospecificity loss during the formation of product were best explained by the generation of biradicals, but partial generation of charge cannot be excluded. Carbonylation of the product followed by exposure to iodine yields the corresponding β-phenyl γ-lactone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative scaffolds are non-antibody proteins that can be engineered to bind new targets. They have found useful niches in the therapeutic space due to their smaller size and the ease with which they can be engineered to be bispecific. We sought a new scaffold that could be used for therapeutic ends and chose the C2 discoidin domain of factor VIII, which is well studied and of human origin. Using yeast surface display, we engineered the C2 domain to bind to αvβ3 integrin with a 16 nM affinity while retaining its thermal stability and monomeric nature. We obtained a crystal structure of the engineered domain at 2.1 Å resolution. We have christened this discoidin domain alternative scaffold the “discobody.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of catalysts that selectively oligomerize light olefins for uses in polymers and fuels remains of interest to the petrochemical and materials industry. For this purpose, two tantalum compounds, (FI)TaMe2Cl2 and (FI)TaMe4, implementing a previously reported phenoxy-imine (FI) ligand framework, have been synthesized and characterized with NMR spectroscopy and X-ray crystallography. When tested for ethylene oligomerization catalysis, (FI)TaMe2Cl2 was found to dimerize ethylene when activated with Et2Zn or EtMgCl, and (FI)TaMe4 dimerized ethylene when activated with B(C6F5)3, both at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.

During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.

It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.

In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.

Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. The thermomagnetic behavior and infrared spectroscopic features of KFe3(SO4)2(OH)6 (jarosite), (H3O)Fe3(SO4)2 (OH)6 (hydronium jarosite), KFe3(CrO4)2 (OH)6, Fe(OH)SO4 (basic iron sulfate), and Fe(OH)CrO4 (basic iron chromate) are reported. Fe(OH)CrO4 and KFe3(CrO4)2 (OH)6 are shown to be weak ferro magnets with Curie temperatures of 73 and 71 °K, respectively. This unusual magnetic behavior is rationalized in terms of the ionic spin configurations of the phases. Exchange coupling through chromate bridging groups is shown to be weak.

II. The magnetic behavior and the influence of preparative history on the magnetic behavior of δFeO(OH) is reported. δFeO(OH) is shown to be a fine-particulate, uniaxial, magnetic species. Magnetization data for this species are shown to be consistent with the existence of magnetically inactive layers surrounding magnetic particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I:

The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.

Part II.

The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic biology combines biological parts from different sources in order to engineer non-native, functional systems. While there is a lot of potential for synthetic biology to revolutionize processes, such as the production of pharmaceuticals, engineering synthetic systems has been challenging. It is oftentimes necessary to explore a large design space to balance the levels of interacting components in the circuit. There are also times where it is desirable to incorporate enzymes that have non-biological functions into a synthetic circuit. Tuning the levels of different components, however, is often restricted to a fixed operating point, and this makes synthetic systems sensitive to changes in the environment. Natural systems are able to respond dynamically to a changing environment by obtaining information relevant to the function of the circuit. This work addresses these problems by establishing frameworks and mechanisms that allow synthetic circuits to communicate with the environment, maintain fixed ratios between components, and potentially add new parts that are outside the realm of current biological function. These frameworks provide a way for synthetic circuits to behave more like natural circuits by enabling a dynamic response, and provide a systematic and rational way to search design space to an experimentally tractable size where likely solutions exist. We hope that the contributions described below will aid in allowing synthetic biology to realize its potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.

The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.

Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotope geochemistry is a valuable toolkit for addressing a broad range of problems in the geosciences. Recent technical advances provide information that was previously unattainable or provide unprecedented precision and accuracy. Two such techniques are site-specific stable isotope mass spectrometry and clumped isotope thermometry. In this thesis, I use site-specific isotope and clumped isotope data to explore natural gas development and carbonate reaction kinetics. In the first chapter, I develop an equilibrium thermodynamics model to calculate equilibrium constants for isotope exchange reactions in small organic molecules. This equilibrium data provides a framework for interpreting the more complex data in the later chapters. In the second chapter, I demonstrate a method for measuring site-specific carbon isotopes in propane using high-resolution gas source mass spectrometry. This method relies on the characteristic fragments created during electron ionization, in which I measure the relative isotopic enrichment of separate parts of the molecule. My technique will be applied to a range of organic compounds in the future. For the third chapter, I use this technique to explore diffusion, mixing, and other natural processes in natural gas basins. As time progresses and the mixture matures, different components like kerogen and oil contribute to the propane in a natural gas sample. Each component imparts a distinct fingerprint on the site-specific isotope distribution within propane that I can observe to understand the source composition and maturation of the basin. Finally, in Chapter Four, I study the reaction kinetics of clumped isotopes in aragonite. Despite its frequent use as a clumped isotope thermometer, the aragonite blocking temperature is not known. Using laboratory heating experiments, I determine that the aragonite clumped isotope thermometer has a blocking temperature of 50-100°C. I compare this result to natural samples from the San Juan Islands that exhibit a maximum clumped isotope temperature that matches this blocking temperature. This thesis presents a framework for measuring site-specific carbon isotopes in organic molecules and new constraints on aragonite reaction kinetics. This study represents the foundation of a future generation of geochemical tools for the study of complex geologic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. It was not possible to produce anti-tetracycline antibody in laboratory animals by any of the methods tried. Tetracycline protein conjugates were prepared and characterized. It was shown that previous reports of the detection of anti-tetracycline antibody by in vitro-methods were in error. Tetracycline precipitates non-specifically with serum proteins. The anaphylactic reaction reported was the result of misinterpretation, since the observations were inconsistent with the known mechanism of anaphylaxis and the supposed antibody would not sensitize guinea pig skin. The hemagglutination reaction was not reproducible and was extremely sensitive to minute amounts of microbial contamination. Both free tetracyclines and the conjugates were found to be poor antigens.

II. Anti-aspiryl antibodies were produced in rabbits using 3 protein carriers. The method of inhibition of precipitation was used to determine the specificity of the antibody produced. ε-Aminocaproate was found to be the most effective inhibitor of the haptens tested, indicating that the combining hapten of the protein is ε-aspiryl-lysyl. Free aspirin and salicylates were poor inhibitors and did not combine with the antibody to a significant extent. The ortho group was found to participate in the binding to antibody. The average binding constants were measured.

Normal rabbit serum was acetylated by aspirin under in vitro conditions, which are similar to physiological conditions. The extent of acetylation was determined by immunochemical tests. The acetylated serum proteins were shown to be potent antigens in rabbits. It was also shown that aspiryl proteins were partially acetylated. The relation of these results to human aspirin intolerance is discussed.

III. Aspirin did not induce contact sensitivity in guinea pigs when they were immunized by techniques that induce sensitivity with other reactive compounds. The acetylation mechanism is not relevant to this type of hypersensitivity, since sensitivity is not produced by potent acetylating agents like acetyl chloride and acetic anhydride. Aspiryl chloride, a totally artificial system, is a good sensitizer. Its specificity was examined.

IV. Protein conjugates were prepared with p-aminosalicylic acid and various carriers using azo, carbodiimide and mixed anhydride coupling. These antigens were injected into rabbits and guinea pigs and no anti-hapten IgG or IgM response was obtained. Delayed hypersensitivity was produced in guinea pigs by immunization with the conjugates, and its specificity was determined. Guinea pigs were not sensitized by either injections or topical application of p-amino-salicylic acid or p-aminosalicylate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. CONFIGURATIONAL STABILITY AND REDISTRIBUTION EQUILIBRIA IN ORGANOMAGNESIUM COMPOUNDS

The dependence of the rate of inversion of a dialkylmagnesium compound on the solvent has been studied.

Examination of the temperature dependence of the nuclear magnetic resonance spectrum of 1-phenyl-2-propylmagnesium bromide in diethyl ether solution indicates that inversion of configuration at the methylene group of this Grignard reagent occurs with an approximate rate of 2 sec-1 at room temperature. This is the first example of a rapid inversion rate in a secondary Grignard reagent.

The rates of exchange of alkyl groups between dineopentylmagnesium and di-s-butylmagnesium, bis-(2-methylbutyl)-magnesium and bis-(4, 4-dimethyl-2-pentyl)-magnesium respectively in diethyl ether solution were found to be fast on the nmr time scale. However, the alkyl group exchange rate was found to be slow in a diethyl ether solution of dineopentylmagnesium and bis-(2-methylbutyl)-magnesium containing N, N, N', N'-tetramethylethylenediamine. The unsymmetrical species neopentyl-2-methylbutyl-magnesium was observed at room temperature in the nmr spectrum of the solution containing the diamine.

II. REDISTRIBUTION EQUILIBRIA IN ORGANOCADMIUM COMPOUNDS

The exchange of methyl groups in dimethylcadmium has been studied by nuclear magnetic resonance spectroscopy. Activation parameters for the methyl group exchange have been measured for a neat sample and for a solution in tetrahydrofuran. The exchange is faster in the basic solvent tetrahydrofuran relative to the neat sample and in tetrahydrofuran solution is retarded by the solvating agent N, N, N’, N’-tetramethylethylenediamine and greatly increased by cadmium bromide. The addition of methanol to a solution of dimethylcadmium in tetrahydrofuran appears to have very little effect on the rate of exchange. The exchange was found to proceed with retention of configuration. The rate-limiting step for the exchange of methyl groups in a basic solvent appears to be the dissociation of coordinating solvent from dimethylcadmium.

The equilibrium between methylcadmium bromide, dimethylcadmium and cadmium bromide in tetrahydrofuran solution has also been studied. At room temperature the interconversion of the species is very fast on the nmr time scale but at -100° distinct absorptions for methylcadmium bromide and imethylcadmium are observed.

The species ethylmethylcadmium has been observed in the nmr spectrum.

The rate of exchange of vinyl groups in a solution of divinylcadmium in tetrahydrofuran has been found to be fast on the nmr time scale.