6 resultados para Humanoid Robot

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.

Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a novel framework for state estimation in the context of robotic grasping and manipulation. The overall estimation approach is based on fusing various visual cues for manipulator tracking, namely appearance and feature-based, shape-based, and silhouette-based visual cues. Similarly, a framework is developed to fuse the above visual cues, but also kinesthetic cues such as force-torque and tactile measurements, for in-hand object pose estimation. The cues are extracted from multiple sensor modalities and are fused in a variety of Kalman filters.

A hybrid estimator is developed to estimate both a continuous state (robot and object states) and discrete states, called contact modes, which specify how each finger contacts a particular object surface. A static multiple model estimator is used to compute and maintain this mode probability. The thesis also develops an estimation framework for estimating model parameters associated with object grasping. Dual and joint state-parameter estimation is explored for parameter estimation of a grasped object's mass and center of mass. Experimental results demonstrate simultaneous object localization and center of mass estimation.

Dual-arm estimation is developed for two arm robotic manipulation tasks. Two types of filters are explored; the first is an augmented filter that contains both arms in the state vector while the second runs two filters in parallel, one for each arm. These two frameworks and their performance is compared in a dual-arm task of removing a wheel from a hub.

This thesis also presents a new method for action selection involving touch. This next best touch method selects an available action for interacting with an object that will gain the most information. The algorithm employs information theory to compute an information gain metric that is based on a probabilistic belief suitable for the task. An estimation framework is used to maintain this belief over time. Kinesthetic measurements such as contact and tactile measurements are used to update the state belief after every interactive action. Simulation and experimental results are demonstrated using next best touch for object localization, specifically a door handle on a door. The next best touch theory is extended for model parameter determination. Since many objects within a particular object category share the same rough shape, principle component analysis may be used to parametrize the object mesh models. These parameters can be estimated using the action selection technique that selects the touching action which best both localizes and estimates these parameters. Simulation results are then presented involving localizing and determining a parameter of a screwdriver.

Lastly, the next best touch theory is further extended to model classes. Instead of estimating parameters, object class determination is incorporated into the information gain metric calculation. The best touching action is selected in order to best discern between the possible model classes. Simulation results are presented to validate the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.

This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.

One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.

One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.

Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.

As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.

Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.

We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.

We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.

In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles. Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.

This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.

This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.

The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.

The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers. The second algorithm extends the first to three dimensions. The third algorithm considers caging a convex polygon in two dimensions using three point fingers, and considers robustness of this cage to variations in the relative positions of the fingers.

This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal objects based on a contact-space formulation. It shows that two-finger cages have several useful properties in contact space. First, the critical points of the cage representation in the hand’s configuration space appear as critical points of the inter-finger distance function in contact space. Second, these critical points can be graphically characterized directly on the object’s boundary. Third, contact space admits a natural rectangular decomposition such that all critical points lie on the rectangle boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These properties lead to a caging graph that can be readily constructed in contact space. Starting from a desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, intermediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed from real-world data illustrates and validates the method.

A second algorithm is developed for finding caging formations of a 3D polyhedron for two point fingers using a lower dimensional contact-space formulation. Results from the two-dimensional algorithm are extended to three dimension. Critical points of the inter-finger distance function are shown to be identical to the critical points of the cage. A decomposition of contact space into 4D regions having useful properties is demonstrated. A geometric analysis of the critical points of the inter-finger distance function results in a catalog of grasps in which the cages change topology, leading to a simple test to classify critical points. With these properties established, the search algorithm from the two-dimensional case may be applied to the three-dimensional problem. An implemented example demonstrates the method.

This thesis also presents a study of cages of convex polygonal objects using three point fingers. It considers a three-parameter model of the relative position of the fingers, which gives complete generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations in the relative position of the fingers without breaking the cage. Using a simple decomposition of free space around the polygon, we present an algorithm which gives all caging placements of the fingers and a characterization of the robustness of these cages.