2 resultados para Human Cancer Genome Project
em CaltechTHESIS
Resumo:
The main focus of this thesis is the use of high-throughput sequencing technologies in functional genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with sequencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts of it are of a more methodological nature while others describe the application of these functional genomic tools to address various biological problems. A significant part of the research presented here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.
The first part of the thesis focuses on the structure and diversity of the human transcriptome. Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based examination of the performance of some of the most popular computational tools used to assemble and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-seq measurements methodological considerations.
The second part presents several studies applying functional genomic tools to the study of the regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 contains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation into the curious phenomenon of the physical association of nuclear transcription factors with mitochondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial and plastid genomes.
The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was developed, and the results of this activity are presented in Chapter 9. These metrics were later used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which these metrics also played a major role) is presented.
The fourth part presents the results of some additional projects the author has been involved in, including the study of the role of the Piwi protein in the transcriptional regulation of transposon expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the heterogeneity of gene expression during cellular reprogramming (Chapter 13).
The last part of the thesis provides a review of the results of the ENCODE Project and the interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical developments and their impact on the field of functional genomics (Chapter 14), and a discussion of some so far insufficiently explored research areas, the future study of which will, in the opinion of the author, provide deep insights into many fundamental but not yet completely answered questions about the transcriptional biology of eukaryotes and its regulation.
Resumo:
Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.
To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.
The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.