5 resultados para Homologous genes

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distal half of the bacteriophage T4 tail fiber interacts with the surface of the bacterium during adsorption. The largest polypeptide in this half fiber is the product of gene 37 (P37). During assembly of the tail fiber, P37 interacts with the product of gene 38 (P38). These two gene products are incompatible with the corresponding gene products from the related phage T2. T2 P37 does not interact with T4 P38 and T2 P38 does not interact with T4 P37. Crosses between T2 and T4 phages mutant in genes 37 and 38 have shown that the carboxyl end of P37 interacts with P38 and with the bacterial surface. In the corresponding region of gene 37 and in gene 38 there is no recombination between T2 and T4. In the rest of gene 37 there are two small regions with relatively high recombination and a region of low recombination.

When T2/T4 heteroduplex DNA molecules are examined in the electron microscope four nonhomologous loops appear in the region of genes 37 and 38. Heteroduplexes between hybrid phages which have part of gene 37 from T4 and part from T2 have roughly located gene 37 mutations in the heteroduplex pattern. For a more precise location of the , mutations a physical map of gene 37 was constructed by determining the molecular weights of amber polypeptide fragments on polyacrylamide gels in the presence of sodium dodecyl sulfate. When the physical and heteroduplex maps are aligned, the regions of low recombination correspond to regions of nonhomology between T2 and T4. Regions with relatively high recombination are homologous.

The molecular weight of T2 P37 is about 13,000 greater than that of T4 P37. Analysis of hybrid phage has shown that this molecular weight difference is all at the carboxyl end of P37.

An antiserum has been prepared which is specific for the distal half fiber of T4. Tests of the ability of gene 37 hybrids to block this antiserum show that there are at least 4 subclasses of antigen specified by different parts of P37.

Observations in the electron microscope of the tailfiber - anti- body complexes formed by the gene 37 hybrids and the specific anti- serum have shown that P37 is oriented linearly in the distal half fiber with its N-terminus near the joint between the two half fibers and its C-terminus near the tip of the fiber. These observations lead to a simple model for the structure of the distal half fiber.

The high recombination in T4 gene 34 was also investigated. A comparison of genetic and physical maps of gene 34 showed that there is a gradient of increasing recombination near one end of the gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.

Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.

The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.

The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigations presented in this thesis use various in vivo techniques to understand how trans-acting factors control gene expression. The first part addresses the transcriptional regulation of muscle creatine kinase (MCK). MCK expression is activated during the course of development and is found only in differentiated muscle. Several in vivo footprints are observed at the enhancer of this gene, but all of these interactions are limited to cell types that express MCK. This is interesting because two of the footprints appear to represent muscle specific use of general transcription factors, while the other two correspond to sites that can bind the myogenic regulator, MyoD1, in vitro. MyoD1 and these general factors are present in myoblasts, but can bind to the enhancer only in myocytes. This suggests that either the factors themselves are post-translationally modified (phosphorylation or protein:protein interactions), or the accessibility of the enhancer to the factors is limited (changes in chromatin structure). The in vivo footprinting study of MCK was performed with a new ligation mediated, single-sided PCR (polymerase chain reaction) technique that I have developed.

The second half of the thesis concerns the regulation of mouse metallothionein (MT). Metallothioneins are a family of highly conserved housekeeping genes whose expression can be induced by heavy metals, steroids, and other stresses. By adapting a primer extension method of genomic sequencing to in vivo footprinting, I've observed both metal inducible and noninducible interactions at the promoter of MT-I. From these results I've been able to limit the possible mechanisms by which metal responsive trans-acting factors induce transcription. These interpretations correlate with a second line of experiments involving the stable titration of positive acting factors necessary for induction of MT. I've amplified the promoter of MT to 10^2-10^3 copies per cell by fusing the 5' and 3' ends of the MT gene to the coding region of DHFR and selecting cells for methotrexate resistance. In these cells, there is a metal-specific titration effect, and although it acts at the level of transcription, it appears to be independent of direct DNA binding factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I. The regions of sequence homology and non-homology between the DNA molecules of T2, T4, and T6 have been mapped by the electron microscopic heteroduplex method. The heteroduplex maps have been oriented with respect to the T4 genetic map. They show characteristic, reproducible patterns of substitution and deletion loops. All heteroduplex molecules show more than 85% homology. Some of the loop patterns in T2/T4 heteroduplexes are similar to those in T4/T6.

We find that the rII, the lysozyme and ac genes, the D region, and gene 52 are homologous in T2, T4, and T6. Genes 43 and 47 are probably homologous between T2 and T4. The region of greatest homology is that bearing the late genes. The host range region, which comprises a part of gene 37 and all of gene 38, is heterologous in T2, T4, and T6. The remainder of gene 37 is partially homologous in the T2/T4 heteroduplex (Beckendorf, Kim and Lielausis, 1972) but it is heterologous in T4/T6 and in T2/T6. Some of the tRNA genes are homologous and some are not. The internal protein genes in general seem to be non-homologous.

The molecular lengths of the T-even DNAs are the same within the limit of experimental error; their calculated molecular weights are correspondingly different due to unequal glucosylation. The size of the T2 genome is smaller than that of T4 or T6, but the terminally repetitious region in T2 is larger. There is a length distribution of the terminal repetition for any one phage DNA, indicating a variability in length of the DNA molecules packaged within the phage.

Part II. E. coli cells infected with phage strains carrying extensive deletions encompassing the gene for the phage ser-tRNA are missing the phage tRNAs normally present in wild type infected cells. By DNA-RNA hybridization we have demonstrated that the DNA complementary to the missing tRNAs is also absent in such deletion mutants. Thus the genes for these tRNAs must be clustered in the same region of the genome as the ser-tRNA gene. Physical mapping of several deletions of the ser-tRNA and lysozyme genes, by examination of heteroduplex DNA in the electron microscope, has enabled us to locate the cluster, to define its maximum size, and to order a few of the tRNA genes within it. That such deletions can be isolated indicates that the phage-specific tRNAs from this cluster are dispensable.

Part III. Genes 37 and 38 between closely related phages T2 and T4 have been compared by genetic, biochemical, and hetero-duplex studies. Homologous, partially homologous and non-homologous regions of the gene 37 have been mapped. The host range determinant which interacts with the gene 38 product is identified.

Part IV. A population of double-stranded ØX-RF DNA molecules carrying a deletion of about 9% of the wild-type DNA has been discovered in a sample cultivated under conditions where the phage lysozyme gene is nonessential. The structures of deleted monomers, dimers, and trimers have been studied by the electron microscope heteroduplex method. The dimers and trimers are shown to be head-to-tail repeats of the deleted monomers. Some interesting examples of the dynamical phenomenon of branch migration in vitro have been observed in heteroduplexes of deleted dimer and trimer strands with undeleted wild-type monomer viral strands.