17 resultados para Hold

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The box scheme proposed by H. B. Keller is a numerical method for solving parabolic partial differential equations. We give a convergence proof of this scheme for the heat equation, for a linear parabolic system, and for a class of nonlinear parabolic equations. Von Neumann stability is shown to hold for the box scheme combined with the method of fractional steps to solve the two-dimensional heat equation. Computations were performed on Burgers' equation with three different initial conditions, and Richardson extrapolation is shown to be effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we investigate atomic scale imperfections and fluctuations in the quantum transport properties of novel semiconductor nanostructures. For this purpose, we have developed a numerically efficient supercell model of quantum transport capable of representing potential variations in three dimensions. This flexibility allows us to examine new quantum device structures made possible through state-of-the-art semiconductor fabrication techniques such as molecular beam epitaxy and nanolithography. These structures, with characteristic dimensions on the order of a few nanometers, hold promise for much smaller, faster and more efficient devices than those in present operation, yet they are highly sensitive to structural and compositional variations such as defect impurities, interface roughness and alloy disorder. If these quantum structures are to serve as components of reliable, mass-produced devices, these issues must be addressed.

In Chapter 1 we discuss some of the important issues in resonant tunneling devices and mention some of thier applications. In Chapters 2 and 3, we describe our supercell model of quantum transport and an efficient numerical implementation. In the remaining chapters, we present applications.

In Chapter 4, we examine transport in single and double barrier tunneling structures with neutral impurities. We find that an isolated attractive impurity in a single barrier can produce a transmission resonance whose position and strength are sensitive to the location of the impurity within the barrier. Multiple impurities can lead to a complex resonance structure that fluctuates widely with impurity configuration. In addition, impurity resonances can give rise to negative differential resistance. In Chapter 5, we study interface roughness and alloy disorder in double barrier structures. We find that interface roughness and alloy disorder can shift and broaden the n = 1 transmission resonance and give rise to new resonance peaks, especially in the presence of clusters comparable in size to the electron deBroglie wavelength. In Chapter 6 we examine the effects of interface roughness and impurities on transmission in a quantum dot electron waveguide. We find that variation in the configuration and stoichiometry of the interface roughness leads to substantial fluctuations in the transmission properties. These fluctuations are reduced by an attractive impurity placed near the center of the dot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A group G → Homeo_+(S^1) is a Möbius-like group if every element of G is conjugate in Homeo(S^1) to a Mobius transformation. Our main result is: given a Mobus like like group G which has at least one global fixed point, G is conjugate in Homeo(S^1) to a Möbius group if and only if the limit set of G is all of S^1 . Moreover, we prove that if the limit set of G is not SI, then after identifying some closed subintervals of S^1 to points, the induced action of G is conjugate to an action of a Möbius group.

We also show that the above result does not hold in the case when G has no global fixed points. Namely, we construct examples of Möbius-like groups with limit set equal to S^1, but these groups cannot be conjugated to Möbius groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes.

Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O+(g), can protonate most (non-alkane) organic species, whereas H3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the ‘function’ of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided valuable information regarding the structure of aqueous interfaces, but structure alone is inadequate to decipher the function. By similar analogy, theoretical predictions based on classical molecular dynamics have remained limited in their scope.

Recently, we have adapted an analytical electrospray ionization mass spectrometer (ESIMS) for probing reactions at the gas-liquid interface in real time. This technique is direct, surface-specific,and provides unambiguous mass-to-charge ratios of interfacial species. With this innovation, we have been able to investigate the following:

1. How do anions mediate proton transfers at the air-water interface?

2. What is the basis for the negative surface potential at the air-water interface?

3. What is the mechanism for catalysis ‘on-water’?

In addition to our experiments with the ESIMS, we applied quantum mechanics and molecular dynamics to simulate our experiments toward gaining insight at the molecular scale. Our results unambiguously demonstrated the role of electrostatic-reorganization of interfacial water during proton transfer events. With our experimental and theoretical results on the ‘superacidity’ of the surface of mildly acidic water, we also explored implications on atmospheric chemistry and green chemistry. Our most recent results explained the basis for the negative charge of the air-water interface and showed that the water-hydrophobe interface could serve as a site for enhanced autodissociation of water compared to the condensed phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.

The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.

The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relentlessly increasing demand for network bandwidth, driven primarily by Internet-based services such as mobile computing, cloud storage and video-on-demand, calls for more efficient utilization of the available communication spectrum, as that afforded by the resurging DSP-powered coherent optical communications. Encoding information in the phase of the optical carrier, using multilevel phase modulationformats, and employing coherent detection at the receiver allows for enhanced spectral efficiency and thus enables increased network capacity. The distributed feedback semiconductor laser (DFB) has served as the near exclusive light source powering the fiber optic, long-haul network for over 30 years. The transition to coherent communication systems is pushing the DFB laser to the limits of its abilities. This is due to its limited temporal coherence that directly translates into the number of different phases that can be imparted to a single optical pulse and thus to the data capacity. Temporal coherence, most commonly quantified in the spectral linewidth Δν, is limited by phase noise, result of quantum-mandated spontaneous emission of photons due to random recombination of carriers in the active region of the laser.

In this work we develop a generically new type of semiconductor laser with the requisite coherence properties. We demonstrate electrically driven lasers characterized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow linewidth is result of a fundamentally new laser design philosophy that separates the functions of photon generation and storage and is enabled by a hybrid Si/III-V integration platform. Photons generated in the active region of the III-V material are readily stored away in the low loss Si that hosts the bulk of the laser field, thereby enabling high-Q photon storage. The storage of a large number of coherent quanta acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous emission-mandated phase perturbations on the laser field, while the enhanced photon lifetime effectively reduces the emission rate of incoherent quanta into the lasing mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the entire optical communication C-band (1530-1575nm) at only a fraction of the input power required by conventional DFB lasers. The results presented in this thesis hold great promise for the large scale integration of lithographically tuned, high-coherence laser arrays for use in coherent communications, that will enable Tb/s-scale data capacities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Home to hundreds of millions of souls and land of excessiveness, the Himalaya is also the locus of a unique seismicity whose scope and peculiarities still remain to this day somewhat mysterious. Having claimed the lives of kings, or turned ancient timeworn cities into heaps of rubbles and ruins, earthquakes eerily inhabit Nepalese folk tales with the fatalistic message that nothing lasts forever. From a scientific point of view as much as from a human perspective, solving the mysteries of Himalayan seismicity thus represents a challenge of prime importance. Documenting geodetic strain across the Nepal Himalaya with various GPS and leveling data, we show that unlike other subduction zones that exhibit a heterogeneous and patchy coupling pattern along strike, the last hundred kilometers of the Main Himalayan Thrust fault, or MHT, appear to be uniformly locked, devoid of any of the “creeping barriers” that traditionally ward off the propagation of large events. The approximately 20 mm/yr of reckoned convergence across the Himalaya matching previously established estimates of the secular deformation at the front of the arc, the slip accumulated at depth has to somehow elastically propagate all the way to the surface at some point. And yet, neither large events from the past nor currently recorded microseismicity nearly compensate for the massive moment deficit that quietly builds up under the giant mountains. Along with this large unbalanced moment deficit, the uncommonly homogeneous coupling pattern on the MHT raises the question of whether or not the locked portion of the MHT can rupture all at once in a giant earthquake. Univocally answering this question appears contingent on the still elusive estimate of the magnitude of the largest possible earthquake in the Himalaya, and requires tight constraints on local fault properties. What makes the Himalaya enigmatic also makes it the potential source of an incredible wealth of information, and we exploit some of the oddities of Himalayan seismicity in an effort to improve the understanding of earthquake physics and cipher out the properties of the MHT. Thanks to the Himalaya, the Indo-Gangetic plain is deluged each year under a tremendous amount of water during the annual summer monsoon that collects and bears down on the Indian plate enough to pull it away from the Eurasian plate slightly, temporarily relieving a small portion of the stress mounting on the MHT. As the rainwater evaporates in the dry winter season, the plate rebounds and tension is increased back on the fault. Interestingly, the mild waggle of stress induced by the monsoon rains is about the same size as that from solid-Earth tides which gently tug at the planets solid layers, but whereas changes in earthquake frequency correspond with the annually occurring monsoon, there is no such correlation with Earth tides, which oscillate back-and-forth twice a day. We therefore investigate the general response of the creeping and seismogenic parts of MHT to periodic stresses in order to link these observations to physical parameters. First, the response of the creeping part of the MHT is analyzed with a simple spring-and-slider system bearing rate-strengthening rheology, and we show that at the transition with the locked zone, where the friction becomes near velocity neutral, the response of the slip rate may be amplified at some periods, which values are analytically related to the physical parameters of the problem. Such predictions therefore hold the potential of constraining fault properties on the MHT, but still await observational counterparts to be applied, as nothing indicates that the variations of seismicity rate on the locked part of the MHT are the direct expressions of variations of the slip rate on its creeping part, and no variations of the slip rate have been singled out from the GPS measurements to this day. When shifting to the locked seismogenic part of the MHT, spring-and-slider models with rate-weakening rheology are insufficient to explain the contrasted responses of the seismicity to the periodic loads that tides and monsoon both place on the MHT. Instead, we resort to numerical simulations using the Boundary Integral CYCLes of Earthquakes algorithm and examine the response of a 2D finite fault embedded with a rate-weakening patch to harmonic stress perturbations of various periods. We show that such simulations are able to reproduce results consistent with a gradual amplification of sensitivity as the perturbing period get larger, up to a critical period corresponding to the characteristic time of evolution of the seismicity in response to a step-like perturbation of stress. This increase of sensitivity was not reproduced by simple 1D-spring-slider systems, probably because of the complexity of the nucleation process, reproduced only by 2D-fault models. When the nucleation zone is close to its critical unstable size, its growth becomes highly sensitive to any external perturbations and the timings of produced events may therefore find themselves highly affected. A fully analytical framework has yet to be developed and further work is needed to fully describe the behavior of the fault in terms of physical parameters, which will likely provide the keys to deduce constitutive properties of the MHT from seismological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of Ring Opening Metathesis Polymerization has allowed the world of block copolymers to expand into brush block copolymers. Brush block copolymers consist of a polymer backbone with polymeric side chains, forcing the backbone to hold a stretched conformation and giving it a worm-like shape. These brush block copolymers have a number of advantages over tradition block copolymers, including faster self-assembly behavior, larger domain sizes, and much less entanglement. This makes them an ideal candidate in the development of a bottom-up approach to forming photonic crystals. Photonic crystals are periodic nanostructures that transmit and reflect only certain wavelengths of light, forming a band gap. These are used in a number of coatings and other optical uses. One and two dimensional photonic crystals are commercially available, though are often expensive and difficult to manufacture. Previous work has focused on the creation of one dimensional photonic crystals from brush block copolymers. In this thesis, I will focus on the synthesis and characterization of asymmetric brush block copolymers for self-assembly into two and three dimensional photonic crystals. Three series of brush block copolymers were made and characterized by Gel Permeation Chromatography and Nuclear Magnetic Resonance spectroscopy. They were then made into films through compressive thermal annealing and characterized by UV-Vis Spectroscopy and Scanning Electron Microscopy. Evidence of non-lamellar structures were seen, indicating the first reported creation of two or three dimensional photonic crystals from brush block copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller and Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth [1]. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin [2]. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission [3]. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.

Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gas-phase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.

From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.

In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex domain structure in ferroelectrics gives rise to electromechanical coupling, and its evolution (via domain switching) results in a time-dependent (i.e. viscoelastic) response. Although ferroelectrics are used in many technological applications, most do not attempt to exploit the viscoelastic response of ferroelectrics, mainly due to a lack of understanding and accurate models for their description and prediction. Thus, the aim of this thesis research is to gain better understanding of the influence of domain evolution in ferroelectrics on their dynamic mechanical response. There have been few studies on the viscoelastic properties of ferroelectrics, mainly due to a lack of experimental methods. Therefore, an apparatus and method called Broadband Electromechanical Spectroscopy (BES) was designed and built. BES allows for the simultaneous application of dynamic mechanical and electrical loading in a vacuum environment. Using BES, the dynamic stiffness and loss tangent in bending and torsion of a particular ferroelectric, viz. lead zirconate titanate (PZT), was characterized for different combinations of electrical and mechanical loading frequencies throughout the entire electric displacement hysteresis. Experimental results showed significant increases in loss tangent (by nearly an order of magnitude) and compliance during domain switching, which shows promise as a new approach to structural damping. A continuum model of the viscoelasticity of ferroelectrics was developed, which incorporates microstructural evolution via internal variables and associated kinetic relations. For the first time, through a new linearization process, the incremental dynamic stiffness and loss tangent of materials were computed throughout the entire electric displacement hysteresis for different combinations of mechanical and electrical loading frequencies. The model accurately captured experimental results. Using the understanding gained from the characterization and modeling of PZT, two applications of domain switching kinetics were explored by using Micro Fiber Composites (MFCs). Proofs of concept of set-and-hold actuation and structural damping using MFCs were demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A.G. Vulih has shown how an essentially unique intrinsic multiplication can be defined in certain types of Riesz spaces (vector lattices) L. In general, the multiplication is not universally defined in L, but L can always be imbedded in a large space L# in which multiplication is universally defined.

If ф is a normal integral in L, then ф can be extended to a normal integral on a large space L1(ф) in L#, and L1(ф) may be regarded as an abstract integral space. A very general form of the Radon-Nikodym theorem can be proved in L1(ф), and this can be used to give a relatively simple proof of a theorem of Segal giving a necessary and sufficient condition that the Radon-Nikodym theorem hold in a measure space.

In another application, the multiplication is used to give a representation of certain Riesz spaces as rings of operators on a Hilbert space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let {Ƶn}n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions

Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1. If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.

Given functions Qi(i(0)) such that

(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1

(ii)D – 1/Ʃ/i = 0 Qi(i(0)) Ξ 1

(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),

we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by

Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qin - 1, Ƶn - 2, …)

With probability 1. The method also yields stationary chains {Ƶn} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].

Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis advances our physical understanding of the sensitivity of the hydrological cycle to global warming. Specifically, it focuses on changes in the longitudinal (zonal) variation of precipitation minus evaporation (P - E), which is predominantly controlled by planetary-scale stationary eddies. By studying idealized general circulation model (GCM) experiments with zonally varying boundary conditions, this thesis examines the mechanisms controlling the strength of stationary-eddy circulations and their role in the hydrological cycle. The overarching goal of this research is to understand the cause of changes in regional P - E with global warming. An understanding of such changes can be useful for impact studies focusing on water availability, ecosystem management, and flood risk.

Based on a moisture-budget analysis of ERA-Interim data, we establish an approximation for zonally anomalous P - E in terms of surface moisture content and stationary-eddy vertical motion in the lower troposphere. Part of the success of this approximation comes from our finding that transient-eddy moisture fluxes partially cancel the effect of stationary-eddy moisture advection, allowing divergent circulations to dominate the moisture budget. The lower-tropospheric vertical motion is related to horizontal motion in stationary eddies by Sverdrup and Ekman balance. These moisture- and vorticity-budget balances also hold in idealized and comprehensive GCM simulations across a range of climates.

By examining climate changes in the idealized and comprehensive GCM simulations, we are able to show the utility of the vertical motion P - E approximation for splitting changes in zonally anomalous P - E into thermodynamic and dynamic components. Shifts in divergent stationary-eddy circulations dominate changes in zonally anomalous P - E. This limits the local utility of the "wet gets wetter, dry gets drier” idea, where existing P - E patterns are amplified with warming by the increase in atmospheric moisture content, with atmospheric circulations held fixed. The increase in atmospheric moisture content manifests instead in an increase in the amplitude of the zonally anomalous hydrological cycle as measured by the zonal variance of P - E. However, dynamic changes, particularly the slowdown of divergent stationary-eddy circulations, limit the strengthening of the zonally anomalous hydrological cycle. In certain idealized cases, dynamic changes are even strong enough to reverse the tendency towards "wet gets wetter, dry gets drier” with warming.

Motivated by the importance of stationary-eddy vertical velocities in the moisture budget analysis, we examine controls on the amplitude of stationary eddies across a wide range of climates in an idealized GCM with simple topographic and ocean-heating zonal asymmetries. An analysis of the thermodynamic equation in the vicinity of topographic forcing reveals the importance of on-slope surface winds, the midlatitude isentropic slope, and latent heating in setting the amplitude of stationary waves. The response of stationary eddies to climate change is determined primarily by the strength of zonal surface winds hitting the mountain. The sensitivity of stationary-eddies to this surface forcing increases with climate change as the slope of midlatitude isentropes decreases. However, latent heating also plays an important role in damping the stationary-eddy response, and this damping becomes stronger with warming as the atmospheric moisture content increases. We find that the response of tropical overturning circulations forced by ocean heat-flux convergence is described by changes in the vertical structure of moist static energy and deep convection. This is used to derive simple scalings for the Walker circulation strength that capture the monotonic decrease with warming found in our idealized simulations.

Through the work of this thesis, the advances made in understanding the amplitude of stationary-waves in a changing climate can be directly applied to better understand and predict changes in the zonally anomalous hydrological cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.