7 resultados para High-energy physics

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation consists of two parts. The first part presents an explicit procedure for applying multi-Regge theory to production processes. As an illustrative example, the case of three body final states is developed in detail, both with respect to kinematics and multi-Regge dynamics. Next, the experimental consistency of the multi-Regge hypothesis is tested in a specific high energy reaction; the hypothesis is shown to provide a good qualitative fit to the data. In addition, the results demonstrate a severe suppression of double Pomeranchon exchange, and show the coupling of two "Reggeons" to an external particle to be strongly damped as the particle's mass increases. Finally, with the use of two body Regge parameters, order of magnitude estimates of the multi-Regge cross section for various reactions are given.

The second part presents a diffraction model for high energy proton-proton scattering. This model developed by Chou and Yang assumes high energy elastic scattering results from absorption of the incident wave into the many available inelastic channels, with the absorption proportional to the amount of interpenetrating hadronic matter. The assumption that the hadronic matter distribution is proportional to the charge distribution relates the scattering amplitude for pp scattering to the proton form factor. The Chou-Yang model with the empirical proton form factor as input is then applied to calculate a high energy, fixed momentum transfer limit for the scattering cross section, This limiting cross section exhibits the same "dip" or "break" structure indicated in present experiments, but falls significantly below them in magnitude. Finally, possible spin dependence is introduced through a weak spin-orbit type term which gives rather good agreement with pp polarization data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross sections for the photoproduction of neutral pi, eta, rho and phi mesons on hydrogen have been measured at the Stanford Linear Accelerator Center using a missing mass spectrometer technique. The data cover photon energies between 5.0 and 17.8 GeV and four momentum transfer squared t between -.12 and -1.38 (GeV/c)2.

Pion differential cross sections at lower energies show a peak at low momentum transfers, a distinctive dip and secondary maximum for t in the region -.4 to -.9 (GeV /c)2, and a smooth decrease at higher momentum transfers. As photon energy increases, the dip becomes less pronounced, in contradiction to the expectations of simple Regge theories based on the exchange of omega and B trajectories only.

Eta photoproduction was measured only below 10 GeV. The cross section has about the same magnitude as the pion production cross section, but decreases exponentially with t, showing no dip.

Rho mesons appear to be diffractively produced. The differential cross section varies approximately as exp(8.5t + 2t2). It falls slowly with energy, decreasing about 35 percent from 6 GeV to 17.8 GeV. A simple quark model relation appears to describe the data well.

Phi meson cross sections are also consistent with diffraction production. The differential cross section varies approximately as exp(4t). The cross section tends to decrease slightly with photon energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector -- the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m2sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 ≤ Z ≤ 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintilla tors, two Cerenkov counters, and two plastic scintillators. Each of the 2-cm thick NaI disks is viewed by six 1.5-inch photomultipliers whose combined outputs measure the energy deposition in that layer. In addition, the six outputs from each disk are compared to determine the position at which incident nuclei traverse each layer to an accuracy of ~2 mm. The Cerenkov counters, which measure particle velocity, are each viewed by twelve 5-inch photomultipliers using light integration boxes.

HEIST-2 determines the mass of individual nuclei by measuring both the change in the Lorentz factor (Δγ) that results from traversing the NaI stack, and the energy loss (ΔΕ) in the stack. Since the total energy of an isotope is given by Ε = γM, the mass M can be determined by M = ΔΕ/Δγ. The instrument is designed to achieve a typical mass resolution of 0.2 amu.

The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40Ar and 56Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40Ar and 56Fe are compared with calculated yields based on semi-empirical cross-section formulae. There are two sets of measurements. The first set of measurements, made at the Lawrence Berkeley Laboratory Bevalac using a beam of 287 MeV/nucleon 40Ar incident on a CH2 target, achieves excellent mass resolution (σm ≤ 0.2 amu) for isotopes of Mg through K using a Si(Li) detector telescope. The second set of measurements, also made at the Lawrence Berkeley Laboratory Bevalac, using a beam of 583 MeV/nucleon 56FeFe incident on a CH2 target, resolved Cr, Mn, and Fe fragments with a typical mass resolution of ~ 0.25 amu, through the use of the Heavy Isotope Spectrometer Telescope (HIST) which was later carried into space on ISEE-3 in 1978. The general agreement between calculation and experiment is good, but some significant differences are reported here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of the continuation to complex values of the angular momentum of the partial wave amplitude is examined for the simplest production process, that of two particles → three particles. The presence of so-called "anomalous singularities" complicates the procedure followed relative to that used for quasi two-body scattering amplitudes. The anomalous singularities are shown to lead to exchange degenerate amplitudes with possible poles in much the same way as "normal" singularities lead to the usual signatured amplitudes. The resulting exchange-degenerate trajectories would also be expected to occur in two-body amplitudes.

The representation of the production amplitude in terms of the singularities of the partial wave amplitude is then developed and applied to the high energy region, with attention being paid to the emergence of "double Regge" terms. Certain new results are obtained for the behavior of the amplitude at zero momentum transfer, and some predictions of polarization and minima in momentum transfer distributions are made. A calculation of the polarization of the ρo meson in the reaction π - p → π - ρop at high energy with small momentum transfer to the proton is compared with data taken at 25 Gev by W. D. Walker and collaborators. The result is favorable, although limited by the statistics of the available data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental consequence of Regge cuts in the angular momentum plane are investigated. The principle tool in the study is the set of diagrams originally proposed by Amati, Fubini, and Stanghellini. Mandelstam has shown that the AFS cuts are actually cancelled on the physical sheet, but they may provide a useful guide to the properties of the real cuts. Inclusion of cuts modifies the simple Regge pole predictions for high-energy scattering data. As an example, an attempt is made to fit high energy elastic scattering data for pp, ṗp, π±p, and K±p, by replacing the Igi pole by terms representing the effect of a Regge cut. The data seem to be compatible with either a cut or the Igi pole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described in this thesis represents an attempt to summarize to date the information collected on the process of high energy heavy ion induced enhanced adhesion. Briefly, the process involves the irradiation of materials covered by thin (≾3μm) films with high energy (E > 200 keV I nucleon) heavy ion beams (such as Fluorine or Chlorine). Enhanced adhesion has been observed on all material combinations tested, including metal on metal, metal on semiconductor, metal on dielectric and dielectric on dielectric systems. In some cases, the enhancement can be quite large, so that a film that could be wiped off a substrate quite easily before irradiation can withstand determined scrubbing afterwards.

Very little is understood yet about this adhesion mechanism, so what is presented are primarily observations about systems studied, and descriptions of the actual preparation and irradiation of samples used. Some discussion is presented about mechanisms that have been considered but rejected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review is presented of the statistical bootstrap model of Hagedorn and Frautschi. This model is an attempt to apply the methods of statistical mechanics in high-energy physics, while treating all hadron states (stable or unstable) on an equal footing. A statistical calculation of the resonance spectrum on this basis leads to an exponentially rising level density ρ(m) ~ cm-3 eβom at high masses.

In the present work, explicit formulae are given for the asymptotic dependence of the level density on quantum numbers, in various cases. Hamer and Frautschi's model for a realistic hadron spectrum is described.

A statistical model for hadron reactions is then put forward, analogous to the Bohr compound nucleus model in nuclear physics, which makes use of this level density. Some general features of resonance decay are predicted. The model is applied to the process of NN annihilation at rest with overall success, and explains the high final state pion multiplicity, together with the low individual branching ratios into two-body final states, which are characteristic of the process. For more general reactions, the model needs modification to take account of correlation effects. Nevertheless it is capable of explaining the phenomenon of limited transverse momenta, and the exponential decrease in the production frequency of heavy particles with their mass, as shown by Hagedorn. Frautschi's results on "Ericson fluctuations" in hadron physics are outlined briefly. The value of βo required in all these applications is consistently around [120 MeV]-1 corresponding to a "resonance volume" whose radius is very close to ƛπ. The construction of a "multiperipheral cluster model" for high-energy collisions is advocated.