3 resultados para Hereditarily Radical Subgroup
em CaltechTHESIS
Resumo:
This thesis discusses two major topics: the ring-opening metathesis polymerization (ROMP) of bulky monomers and the radical-mediated hydrophosphonation of olefins. The research into the ROMP of bulky monomers is further divided into three chapters: wedge-shaped monomers, the alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene, and the kinetic resolution polymerization of 1-methyloxanorbornene derivatives. The wedge-shaped monomers can be polymerized into diblock copolymers that possess photonic crystal properties. The alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene is performed with > 90% alternation via two different routes: typical alternating copolymerization and a sequence editing approach. The kinetic resolution polymerization of these same 1-methyloxanorbornene monomers achieves only modest selectivity (S=4), but there is evidence that the growing polymer chain forms a helix that influences the selectivity of the resolution. The last topic is the radical-mediated hydrophosphonation of olefins. This synthetic method provides access to Wittig reagents that are capable of highly cis-selective olefinations of aldehydes.
Resumo:
This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.
Resumo:
We have sought to determine the nature of the free-radical precursors to ring-opened hydrocarbon 5 and ring-closed hydrocarbon 6. Reasonable alternative formulations involve the postulation of hydrogen abstraction (a) by a pair of rapidly equilibrating classical radicals (the ring-opened allylcarbinyl-type radical 3 and the ring-closed cyclopropylcarbinyl-type 4), or (b) by a nonclassical radical such as homoallylic radical 7.
[Figure not reproduced.]
Entry to the radical system is gained via degassed thermal decomposition of peresters having the ring-opened and the ring-closed structures. The ratio of 6:5 is essentially independent of the hydrogen donor concentration for decomposition of the former at 125° in the presence of triethyltin hydrdride. A deuterium labeling study showed that the α and β methylene groups in 3 (or the equivalent) are rapidly interchanged under these conditions.
Existence of two (or more) product-forming intermediates is indicated (a) by dependence of the ratio 6:5 on the tin hydride concentration for decomposition of the ring-closed perester at 10 and 35°, and (b) by formation of cage products having largely or wholly the structure (ring-opened or ring-closed) of the starting perester.
Relative rates of hydrogen abstraction by 3 could be inferred by comparison of ratios of rate constants for hydrogen abstraction and ortho-ring cyclization:
[Figure not reproduced.]
At 100° values of ka/kr are 0.14 for hydrogen abstraction from 1,4-cyclohexadiene and 7 for abstraction from triethyltin hydride. The ratio 6:5 at the same temperature is ~0.0035 for hydrogen abstraction from 1,4-cyclohexadiene, ~0.078 for abstraction from the tin hydride, and ≥ 5 for abstraction from cyclohexadienyl radicals. These data indicate that abstraction of hydrogen from triethyltin hydride is more rapid than from 1,4-cyclohexadiene by a factor of ~1000 for 4, but only ~50 for 3.
Measurements of product ratios at several temperatures allowed the construction of an approximate energy-level scheme. A major inference is that isomerization of 3 to 4 is exothermic by 8 ± 3 kcal/mole, in good agreement with expectations based on bond dissociation energies. Absolute rate-constant estimates are also given.
The results are nicely compatible with a classical-radical mechanism, but attempted interpretation in terms of a nonclassical radical precursor of product ratios formed even from equilibrated radical intermediates leads, it is argued, to serious difficulties.
The roles played by hydrogen abstraction from 1,4,-cyclohexadiene and from the derived cyclohexadienyl radicals were probed by fitting observed ratios of 6:5 and 5:10 in the sense of least-squares to expressions derived for a complex mechanistic scheme. Some 30 to 40 measurements on each product ratio, obtained under a variety of experimental conditions, could be fit with an average deviation of ~6%. Significant systematic deviations were found, but these could largely be redressed by assuming (a) that the rate constant for reaction of 4 with cyclohexadienyl radical is inversely proportional to the viscosity of the medium (i.e., is diffusion-controlled), and (b) that ka/kr for hydrogen abstraction from 1,4-cyclohexadiene depends slightly on the composition of the medium. An average deviation of 4.4% was thereby attained.
Degassed thermal decomposition of the ring-opened perester in the presence of the triethyltin hydride occurs primarily by attack on perester of triethyltin radicals, presumably at the –O-O- bond, even at 0.01 M tin hydride at 100 and 125°. Tin ester and tin ether are apparently formed in closely similar amounts under these conditions, but the tin ester predominates at room temperature in the companion air-induced decomposition, indicating that attack on perester to give the tin ether requires an activation energy approximately 5 kcal/mole in excess of that for the formation of tin ester.