2 resultados para Heat-and-moisture Exchanger

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle aims of this thesis include the development of models of sublimation and melting from first principles and the application of these models to the rare gases.

A simple physical model is constructed to represent the sublimation of monatomic elements. According to this model, the solid and gas phases are two states of a single physical system. The nature of the phase transition is clearly revealed, and the relations between the vapor pressure, the latent heat, and the transition temperature are derived. The resulting theory is applied to argon, krypton, and xenon, and good agreement with experiment is found.

For the melting transition, the solid is represented by an anharmonic model and the liquid is described by the Percus-Yevick approximation. The behavior of the liquid at high densities is studied on the isotherms kT/∈ = 1.3, 1.8, and 2.0, where k is Boltzmann's constant, T is the temperature, and e is the well depth of the Lennard-Jones 12-6 pair potential. No solutions of the PercusYevick equation were found for ρσ3 above 1.3, where ρ is the particle density and σ is the radial parameter of the Lennard-Jones potential. The liquid structure is found to be very different from the solid structure near the melting line. The liquid pressures are about 50 percent low for experimental melting densities of argon. This discrepancy gives rise to melting pressures up to twice the experimental values.