1 resultado para Harris, Robert H.

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let {Ƶn}n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions

Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1. If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.

Given functions Qi(i(0)) such that

(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1

(ii)D – 1/Ʃ/i = 0 Qi(i(0)) Ξ 1

(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),

we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by

Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qin - 1, Ƶn - 2, …)

With probability 1. The method also yields stationary chains {Ƶn} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].

Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.