2 resultados para Hall, Angeline Stickney, 1830-1892.
em CaltechTHESIS
Resumo:
The Hall coefficient and resistance in several specimens of an amorphous metallic alloy containing 80 at.% palladium and 20 at.% silicon have been investigated at temperatures between 4.2°K and room temperature. An ideal limiting behavior of these transport coefficients was analyzed on the basis of the nearly free electron model to yield a carrier density of 9 x 1022 cm.-3, or about 1.7 electrons per palladium atom, and a mean free path of about 9Å which is almost constant with temperature. The deviations of the individual specimens from this ideal behavior, which were small but noticeable in the relative resistivity and much greater in the Hall coefficient, can be explained by invoking disk-shaped crystalline regions with low resistivity and a positive Hall coefficient. A detailed calculation shows how a volume fraction of such crystalline material too small to be noticed in X-ray diffraction could have a significant effect on the resistivity and a much greater effect on the Hall coefficient.
Resumo:
The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon.
Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an overdamped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I-V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.