6 resultados para H2

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of metal-acceptor interactions arising from M–BR3 and M–PR3 bonding is discussed with respect to reactions between first-row transition metals and N2, H2, and CO. Thermally robust, S = 1/2 (TPB)Co(H2) and (TPB)Co(N2) complexes (TPB = tris(2- (diisopropylphosphino)phenyl)borane) are described and the energetics of N2 and H2 binding are measured. The H2 and N2 ligands are bound more weakly in the (TPB)Co complexes than in related (SiP3)M(L) complexes (SiP3 = tris(2- (diisopropylphosphino)phenyl)silyl). Comparisons within and between these two ligand platforms allow for the factors that affect N2 (and H2) binding and activation to be delineated. The characterization and reactivity of (DPB)Fe complexes (DPB = bis(2- (diisopropylphosphino)phenyl)phenylborane) in the context of N2 functionalization and E–H bond addition (E = H, C, N, Si) are described. This platform allows for the one-pot transformation of free N2 to an Fe hydrazido(-) complex via an Fe aminoimide intermediate. The principles learned from the N2 chemistry using (DPB)Fe are applied to CO reduction on the same system. The preparation of (DPB)Fe(CO)2 is described as well as its reductive functionalization to generate an unprecedented Fe dicarbyne. The bonding in this highly covalent complex is discussed in detail. Initial studies of the reactivity of the Fe dicarbyne reveal that a CO-derived olefin is released upon hydrogenation. Alternative approaches to uncovering unusual reactivity using metal- acceptor interactions are described in Chapters 5 and 6, including initial studies on a new π-accepting tridentate diphosphinosulfinyl ligand and strategies for designing ligands that undergo site-selective metallation to generate heterobimetallic complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4)2-RbHSO4 system, Rb3H(SeO4)2-Cs3H(SeO4)2 solid solution system, and Cs6(H2SO4)3(H1.5PO4)4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems.

Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO4 and the previously unknown compound Rb5H3(SO4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3̅m of Cs5H3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity.

The compounds Rb3H(SeO4)2 and Cs3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3̅m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member.

The compound Cs6(H2SO4)3(H1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior.

References

[1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305.

[2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262.

[3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are important problems to overcome if solar energy or other renewable energy sources are to be used effectively on a global scale. Solar photons must not only be harvested and converted into a usable form, but they must also be efficiently stored so that energy is available for use on cloudy days and at night. In this work, both the energy conversion and energy storage problems are addressed. Specifically, two cobalt complexes were designed and their reactivity probed for applications in energy conversion and storage. The first chapter describes a cobalt complex that is the first example of a dimeric cobalt compound with two singly proton-bridged cobaloxime units linked by a central BO4--bridge. Using electrochemical methods, the redox properties of the dimer were evaluated and it was found to be an electrocatalyst for proton reduction in acetonitrile.

Because hydrogen gas is difficult to handle and store, the hydrogenation of CO2 and later dehydrogenation of the liquid product, formic acid, has been proposed as a hydrogen storage system. Thus, a second complex, described in chapter two, supported by a triphosphine ligand framework was used as a catalyst precursor for this key dehydrogenation step. The studies here demonstrate the efficacy of the complex as a precatalyst for the desired reaction, with good conversion of starting formic acid to CO2 and H2. In order to better understand the properties of the triphosphine cobalt complex, a synthetic procedure for substituting electron donating groups (e.g., methoxy groups) onto the ligand was investigated, yielding a novel diphosphine cobalt(II) complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terphenyl diphosphines bearing pendant ethers were prepared to provide mechanistic insight into the mechanism of activation of aryl C–O bonds with Group 9 and Group 10 transition metals. Chapters 2 and 3 of this dissertation describe the reactivity of compounds supported by the model phosphine and extension of this chemistry to heterogenous C–O bond activation.

Chapter 2 describes the synthesis and reactivity of aryl-methyl and aryl-aryl model systems. The metallation of these compounds with Ni, Pd, Pt, Co, Rh, and Ir is described. Intramolecular bond activation pathways are described. In the case of the aryl-methyl ether, aryl C–O bond activation was observed only for Ni, Rh, and Ir.

Chapter 3 outlines the reactivity of heterogenous Rh and Ir catalysts for aryl ether C–O bond cleavage. Using Rh/C and an organometallic Ir precursor, aryl ethers were treated with H2 and heat to afford products of hydrogenolysis and hydrogenation. Conditions were modified to optimize the yield of hydrogenolysis product. Hydrogenation could not be fully suppressed in these systems.

Appendix A describes initial investigations of bisphenoxyiminoquinoline dichromium compounds for selective C2H4 oligomerization to afford α-olefins. The synthesis of monometallic and bimetallic Cr complexes is described. These compounds are compared to literature examples and found to be less active and non-selective for production of α-olefins.

Appendix B describes the coordination chemistry of terphenyl diphosphines, terphenyl bisphosphinophenols, and biphenyl phosphinophenols proligands with molybdenum, cobalt, and nickel. Since their synthesis, terphenyl diphosphine molybdenum compounds have been reported to be good catalysts for the dehydrogenation of ammonia borane. Biphenyl phosphinophenols are demonstrated provide both phosphine and arene donors to transition metals while maintaining a sterically accessible coordination sphere. Such ligands may be promising in the context of the activation of other small molecules.

Appendix C contains relevant NMR spectra for the compounds presented in the preceding sections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mergers and interacting galaxies are pivotal to the evolution of galaxies in the universe. They are the sites of prodigious star formation and key to understanding the starburst processes: the physical and chemical properties and the dynamics of the molecular gas. ULIRGs or Ultraluminous Infrared Galaxies are a result of many of these mergers. They host extreme starbursts, AGNs, and mergers. They are the perfect laboratory to probe the connection between starbursts, black hole accretion and mergers and to further our understanding of star formation and merging.

NGC 6240 and Arp 220 can be considered the founding members of this very active class of objects. They are in different stages of merging and hence are excellent case studies to further our understanding about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with CARMA C and B Configurations (2" and 0.5 - 0.8"). Multi-band imaging allows excitation analysis of HCN, HCO+, HNC, and CS along with CO transitions to constrain the properties of the gas. Our dataset is unique in that we have observed these lines at similar resolutions and high sensitivity which can be used to derive line ratios of faint high excitation lines.

Arp 220 has not had confirmed X-ray AGN detections for either nuclei. However, our observations indicate HCN/HNC ratios consistent with the chemistry of X-ray Dominated Regions (XDRs) -- a likely symptom of AGN. We calculated the molecular Hydrogen densities using each of the molecular species and conclude that assuming abundances of HNC and HCO+ similar to those in galactic sources are incorrect in the case of ULIRGs. The physical conditions in the dense molecular gas in ULIRGs alter these abundances. The derived H2 volume densities are ~ 5 x 104 cm-3 in both Arp 220 nuclei and ~ 104 cm-3 in NGC 6240.