2 resultados para Gustav IV Adolf, King of Sweden, 1778-1837.
em CaltechTHESIS
Resumo:
In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.
In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.
An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.
Resumo:
I. ELECTROPHORESIS OF THE NUCLEIC ACIDS
A zone electrophoresis apparatus using ultraviolet optics has been constructed to study nucleic acids at concentrations less than 0.004%. Native DNA has a mobility about 15% higher than denatured DNA over a range of conditions. Otherwise, the electrophoretic mobility is independent of molecular weight, base composition or source. DNA mobilities change in the expected way with pH but the fractional change in mobility is less than the calculated change in charge. A small decrease in mobility accompanies an increase in ionic strength. RNA’s from various sources have mobilities slightly lower than denatured DNA except for s-RNA which travels slightly faster. The important considerations governing the mobility of nucleic acids appear to be the nature of the hydrodynamic segment, and the binding of counterions. The differences between electrophoresis and sedimentation stem from the fact that all random coil polyelectrolytes are fundamentally free draining in electrophoresis.
II. THE CYTOCHROME C/DNA COMPLEX
The basic protein, cytochrome c, has been complexed to DNA. Up to a cytochrome:DNA mass ratio of 2, a single type of complex is formed. Dissociation of this complex occurs between 0.05F and 0.1F NaCl. The complexing of cytochrome to DNA causes a slight increase in the melting temperature of the DNA, and a reduction of the electrophoretic mobility proportional to the decrease in net charge. Above a cytochrome:DNA mass ratio of 2.5, a different type of complex is formed. The results suggest that complexes such as are formed in the Kleinschmidt technique of electron microscopy would not exist in bulk solution and are exclusively film phenomena.
III. STUDIES OF THE ELECTROPHORESIS AND MELTING BEHAVIOUR OF NUCLEOHISTONES
Electrophoresis studies on reconstituted nucleohistones indicate that the electrophoretic mobility for these complexes is a function of the net charge of the complex. The mobility is therefore dependent on the charge density of the histone complexing the DNA, as well as on the histone/DNA ratio. It is found that the different histones affect the transition from native to denatured DNA in different ways. It appears that histone I is exchanging quite rapidly between DNA molecules in 0.01 F salt, while histone II is irreversibly bound. Histone III-IV enhances the capacity of non-strand separated denatured DNA to reanneal. Studies on native nucleoproteins indicate that there are no gene-sized uncomplexed DNA regions in any preparations studied.
IV. THE DISSOCIATION OF HISTONE FROM CALF THYMUS CROMATIN
Calf thymus nucleoprotein was treated with varying concentrations of NaCl. The identity of the histones associated and dissociated from the DNA at each salt concentration was determined by gel electrophoresis. It was found that there is no appreciable histone dissociation below 0.4 F NaCl. The lysine rich histones dissociate between 0.4 and 0.5 F NaCl. Their dissociation is accompanies by a marked increase in the solubility of the chromatin. The moderately lysine rich histones dissociate mainly between 0.8 and 1.1 F NaCl. There are two arginine rich histone components: the first dissociates between 0.8 F and 1.1 F NaCl, but the second class is the very last to be dissociated from the DNA (dissociation beginning at 1.0 F NaCl). By 2.0 F NaCl, essentially all the histones are dissociated.
The properties of the extracted nucleoprotein were studied. The electrophoretic mobility increases and the melting temperature decreases as more histones are dissociated from the DNA. A comparison with the dissociation of histones from DNA in NaClO4 shows that to dissociate the same class of histones, the concentration of NaCl required is twice that of NaClO4.