6 resultados para Green Star
em CaltechTHESIS
The intergalactic and circumgalactic medium surrounding star-forming galaxies at redshifts 2 < z < 3
Resumo:
We present measurements of the spatial distribution, kinematics, and physical properties of gas in the circumgalactic medium (CGM) of 2.0<z<2.8 UV color-selected galaxies as well as within the 2<z<3 intergalactic medium (IGM). These measurements are derived from Voigt profile decomposition of the full Lyα and Lyβ forest in 15 high-resolution, high signal-to-noise ratio QSO spectra resulting in a catalog of ∼6000 HI absorbers.
Chapter 2 of this thesis focuses on HI surrounding high-z star-forming galaxies drawn from the Keck Baryonic Structure Survey (KBSS). The KBSS is a unique spectroscopic survey of the distant universe designed to explore the details of the connection between galaxies and intergalactic baryons within the same survey volumes. The KBSS combines high-quality background QSO spectroscopy with large densely-sampled galaxy redshift surveys to probe the CGM at scales of ∼50 kpc to a few Mpc. Based on these data, Chapter 2 presents the first quantitative measurements of the distribution, column density, kinematics, and absorber line widths of neutral hydrogen surrounding high-z star-forming galaxies.
Chapter 3 focuses on the thermal properties of the diffuse IGM. This analysis relies on measurements of the ∼6000 absorber line widths to constrain the thermal and turbulent velocities of absorbing "clouds." A positive correlation between the column density of HI and the minimum line width is recovered and implies a temperature-density relation within the low-density IGM for which higher-density regions are hotter, as is predicted by simple theoretical arguments.
Chapter 4 presents new measurements of the opacity of the IGM and CGM to hydrogen-ionizing photons. The chapter begins with a revised measurement of the HI column density distribution based on this new absorption line catalog that, due to the inclusion of high-order Lyman lines, provides the first statistically robust measurement of the frequency of absorbers with HI column densities 14 ≲ log(NHI/cm-2) ≲ 17.2. Also presented are the first measurements of the column density distribution of HI within the CGM (50 <d < 300 pkpc) of high-z galaxies. These distributions are used to calculate the total opacity of the IGM and IGM+CGM and to revise previous measurements of the mean free path of hydrogen-ionizing photons within the IGM. This chapter also considers the effect of the surrounding CGM on the transmission of ionizing photons out of the sites of active star-formation and into the IGM.
This thesis concludes with a brief discussion of work in progress focused on understanding the distribution of metals within the CGM of KBSS galaxies. Appendix B discusses my contributions to the MOSFIRE instrumentation project.
Resumo:
With data centers being the supporting infrastructure for a wide range of IT services, their efficiency has become a big concern to operators, as well as to society, for both economic and environmental reasons. The goal of this thesis is to design energy-efficient algorithms that reduce energy cost while minimizing compromise to service. We focus on the algorithmic challenges at different levels of energy optimization across the data center stack. The algorithmic challenge at the device level is to improve the energy efficiency of a single computational device via techniques such as job scheduling and speed scaling. We analyze the common speed scaling algorithms in both the worst-case model and stochastic model to answer some fundamental issues in the design of speed scaling algorithms. The algorithmic challenge at the local data center level is to dynamically allocate resources (e.g., servers) and to dispatch the workload in a data center. We develop an online algorithm to make a data center more power-proportional by dynamically adapting the number of active servers. The algorithmic challenge at the global data center level is to dispatch the workload across multiple data centers, considering the geographical diversity of electricity price, availability of renewable energy, and network propagation delay. We propose algorithms to jointly optimize routing and provisioning in an online manner. Motivated by the above online decision problems, we move on to study a general class of online problem named "smoothed online convex optimization", which seeks to minimize the sum of a sequence of convex functions when "smooth" solutions are preferred. This model allows us to bridge different research communities and help us get a more fundamental understanding of general online decision problems.
Resumo:
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
Resumo:
The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi's unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM-IPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z=0.145 and z = 0.384, respectively), are sub-luminous with respect to "standard" cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM--IPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.
Resumo:
This investigation is concerned with the notion of concentrated loads in classical elastostatics and related issues. Following a limit treatment of problems involving concentrated internal and surface loads, the orders of the ensuing displacements and stress singularities, as well as the stress resultants of the latter, are determined. These conclusions are taken as a basis for an alternative direct formulation of concentrated-load problems, the completeness of which is established through an appropriate uniqueness theorem. In addition, the present work supplies a reciprocal theorem and an integral representation-theorem applicable to singular problems of the type under consideration. Finally, in the course of the analysis presented here, the theory of Green's functions in elastostatics is extended.
Resumo:
In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.