3 resultados para Global warming.

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis advances our physical understanding of the sensitivity of the hydrological cycle to global warming. Specifically, it focuses on changes in the longitudinal (zonal) variation of precipitation minus evaporation (P - E), which is predominantly controlled by planetary-scale stationary eddies. By studying idealized general circulation model (GCM) experiments with zonally varying boundary conditions, this thesis examines the mechanisms controlling the strength of stationary-eddy circulations and their role in the hydrological cycle. The overarching goal of this research is to understand the cause of changes in regional P - E with global warming. An understanding of such changes can be useful for impact studies focusing on water availability, ecosystem management, and flood risk.

Based on a moisture-budget analysis of ERA-Interim data, we establish an approximation for zonally anomalous P - E in terms of surface moisture content and stationary-eddy vertical motion in the lower troposphere. Part of the success of this approximation comes from our finding that transient-eddy moisture fluxes partially cancel the effect of stationary-eddy moisture advection, allowing divergent circulations to dominate the moisture budget. The lower-tropospheric vertical motion is related to horizontal motion in stationary eddies by Sverdrup and Ekman balance. These moisture- and vorticity-budget balances also hold in idealized and comprehensive GCM simulations across a range of climates.

By examining climate changes in the idealized and comprehensive GCM simulations, we are able to show the utility of the vertical motion P - E approximation for splitting changes in zonally anomalous P - E into thermodynamic and dynamic components. Shifts in divergent stationary-eddy circulations dominate changes in zonally anomalous P - E. This limits the local utility of the "wet gets wetter, dry gets drier” idea, where existing P - E patterns are amplified with warming by the increase in atmospheric moisture content, with atmospheric circulations held fixed. The increase in atmospheric moisture content manifests instead in an increase in the amplitude of the zonally anomalous hydrological cycle as measured by the zonal variance of P - E. However, dynamic changes, particularly the slowdown of divergent stationary-eddy circulations, limit the strengthening of the zonally anomalous hydrological cycle. In certain idealized cases, dynamic changes are even strong enough to reverse the tendency towards "wet gets wetter, dry gets drier” with warming.

Motivated by the importance of stationary-eddy vertical velocities in the moisture budget analysis, we examine controls on the amplitude of stationary eddies across a wide range of climates in an idealized GCM with simple topographic and ocean-heating zonal asymmetries. An analysis of the thermodynamic equation in the vicinity of topographic forcing reveals the importance of on-slope surface winds, the midlatitude isentropic slope, and latent heating in setting the amplitude of stationary waves. The response of stationary eddies to climate change is determined primarily by the strength of zonal surface winds hitting the mountain. The sensitivity of stationary-eddies to this surface forcing increases with climate change as the slope of midlatitude isentropes decreases. However, latent heating also plays an important role in damping the stationary-eddy response, and this damping becomes stronger with warming as the atmospheric moisture content increases. We find that the response of tropical overturning circulations forced by ocean heat-flux convergence is described by changes in the vertical structure of moist static energy and deep convection. This is used to derive simple scalings for the Walker circulation strength that capture the monotonic decrease with warming found in our idealized simulations.

Through the work of this thesis, the advances made in understanding the amplitude of stationary-waves in a changing climate can be directly applied to better understand and predict changes in the zonally anomalous hydrological cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis advances our understanding of midlatitude storm tracks and how they respond to perturbations in the climate system. The midlatitude storm tracks are regions of maximal turbulent kinetic energy in the atmosphere. Through them, the bulk of the atmospheric transport of energy, water vapor, and angular momentum occurs in midlatitudes. Therefore, they are important regulators of climate, controlling basic features such as the distribution of surface temperatures, precipitation, and winds in midlatitudes. Storm tracks are robustly projected to shift poleward in global-warming simulations with current climate models. Yet the reasons for this shift have remained unclear. Here we show that this shift occurs even in extremely idealized (but still three-dimensional) simulations of dry atmospheres. We use these simulations to develop an understanding of the processes responsible for the shift and develop a conceptual model that accounts for it.

We demonstrate that changes in the convective static stability in the deep tropics alone can drive remote shifts in the midlatitude storm tracks. Through simulations with a dry idealized general circulation model (GCM), midlatitude storm tracks are shown to be located where the mean available potential energy (MAPE, a measure of the potential energy available to be converted into kinetic energy) is maximal. As the climate varies, even if only driven by tropical static stability changes, the MAPE maximum shifts primarily because of shifts of the maximum of near-surface meridional temperature gradients. The temperature gradients shift in response to changes in the width of the tropical Hadley circulation, whose width is affected by the tropical static stability. Storm tracks generally shift in tandem with shifts of the subtropical terminus of the Hadley circulation.

We develop a one-dimensional diffusive energy-balance model that links changes in the Hadley circulation to midlatitude temperature gradients and so to the storm tracks. It is the first conceptual model to incorporate a dynamical coupling between the tropical Hadley circulation and midlatitude turbulent energy transport. Numerical and analytical solutions of the model elucidate the circumstances of when and how the storm tracks shift in tandem with the terminus of the Hadley circulation. They illustrate how an increase of only the convective static stability in the deep tropics can lead to an expansion of the Hadley circulation and a poleward shift of storm tracks.

The simulations with the idealized GCM and the conceptual energy-balance model demonstrate a clear link between Hadley circulation dynamics and midlatitude storm track position. With the help of the hierarchy of models presented in this thesis, we obtain a closed theory of storm track shifts in dry climates. The relevance of this theory for more realistic moist climates is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn’s atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn’s subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation.

Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations.

Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires consideration of the dynamical response to the heat capacity asymmetry and the seasonal cycle of insolation. Interestingly, the idealized monsoonal precipitation bears resemblance to precipitation in the Indian monsoon sector, suggesting that this work may provide insight into the causes of the temporally asymmetric distribution of precipitation over southeast Asia.