4 resultados para Generator matrices
em CaltechTHESIS
Resumo:
The structure of the set ϐ(A) of all eigenvalues of all complex matrices (elementwise) equimodular with a given n x n non-negative matrix A is studied. The problem was suggested by O. Taussky and some aspects have been studied by R. S. Varga and B.W. Levinger.
If every matrix equimodular with A is non-singular, then A is called regular. A new proof of the P. Camion-A.J. Hoffman characterization of regular matrices is given.
The set ϐ(A) consists of m ≤ n closed annuli centered at the origin. Each gap, ɤ, in this set can be associated with a class of regular matrices with a (unique) permutation, π(ɤ). The association depends on both the combinatorial structure of A and the size of the aii. Let A be associated with the set of r permutations, π1, π2,…, πr, where each gap in ϐ(A) is associated with one of the πk. Then r ≤ n, even when the complement of ϐ(A) has n+1 components. Further, if π(ɤ) is the identity, the real boundary points of ɤ are eigenvalues of real matrices equimodular with A. In particular, if A is essentially diagonally dominant, every real boundary point of ϐ(A) is an eigenvalues of a real matrix equimodular with A.
Several conjectures based on these results are made which if verified would constitute an extension of the Perron-Frobenius Theorem, and an algebraic method is introduced which unites the study of regular matrices with that of ϐ(A).
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.
Resumo:
We are concerned with the class ∏n of nxn complex matrices A for which the Hermitian part H(A) = A+A*/2 is positive definite.
Various connections are established with other classes such as the stable, D-stable and dominant diagonal matrices. For instance it is proved that if there exist positive diagonal matrices D, E such that DAE is either row dominant or column dominant and has positive diagonal entries, then there is a positive diagonal F such that FA ϵ ∏n.
Powers are investigated and it is found that the only matrices A for which Am ϵ ∏n for all integers m are the Hermitian elements of ∏n. Products and sums are considered and criteria are developed for AB to be in ∏n.
Since ∏n n is closed under inversion, relations between H(A)-1 and H(A-1) are studied and a dichotomy observed between the real and complex cases. In the real case more can be said and the initial result is that for A ϵ ∏n, the difference H(adjA) - adjH(A) ≥ 0 always and is ˃ 0 if and only if S(A) = A-A*/2 has more than one pair of conjugate non-zero characteristic roots. This is refined to characterize real c for which cH(A-1) - H(A)-1 is positive definite.
The cramped (characteristic roots on an arc of less than 180°) unitary matrices are linked to ∏n and characterized in several ways via products of the form A -1A*.
Classical inequalities for Hermitian positive definite matrices are studied in ∏n and for Hadamard's inequality two types of generalizations are given. In the first a large subclass of ∏n in which the precise statement of Hadamardis inequality holds is isolated while in another large subclass its reverse is shown to hold. In the second Hadamard's inequality is weakened in such a way that it holds throughout ∏n. Both approaches contain the original Hadamard inequality as a special case.
Resumo:
The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.
1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.
2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.
3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1-μn)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.