1 resultado para Gender relations
em CaltechTHESIS
Filtro por publicador
- Repository Napier (3)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (13)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (22)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (15)
- Aston University Research Archive (6)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (30)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (1)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (24)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Cornell: DigitalCommons@ILR (2)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (55)
- Indian Institute of Science - Bangalore - Índia (49)
- Instituto Politécnico do Porto, Portugal (2)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Línguas & Letras - Unoeste (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (13)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (9)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (355)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (45)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universidade Metodista de São Paulo (6)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal (1)
- Université de Montréal, Canada (15)
- Université Laval Mémoires et thèses électroniques (2)
- University of Queensland eSpace - Australia (10)
- University of Washington (3)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This thesis is divided into three chapters. In the first chapter we study the smooth sets with respect to a Borel equivalence realtion E on a Polish space X. The collection of smooth sets forms σ-ideal. We think of smooth sets as analogs of countable sets and we show that an analog of the perfect set theorem for Σ11 sets holds in the context of smooth sets. We also show that the collection of Σ11 smooth sets is ∏11 on the codes. The analogs of thin sets are called sparse sets. We prove that there is a largest ∏11 sparse set and we give a characterization of it. We show that in L there is a ∏11 sparse set which is not smooth. These results are analogs of the results known for the ideal of countable sets, but it remains open to determine if large cardinal axioms imply that ∏11 sparse sets are smooth. Some more specific results are proved for the case of a countable Borel equivalence relation. We also study I(E), the σ-ideal of closed E-smooth sets. Among other things we prove that E is smooth iff I(E) is Borel.
In chapter 2 we study σ-ideals of compact sets. We are interested in the relationship between some descriptive set theoretic properties like thinness, strong calibration and the covering property. We also study products of σ-ideals from the same point of view. In chapter 3 we show that if a σ-ideal I has the covering property (which is an abstract version of the perfect set theorem for Σ11 sets), then there is a largest ∏11 set in Iint (i.e., every closed subset of it is in I). For σ-ideals on 2ω we present a characterization of this set in a similar way as for C1, the largest thin ∏11 set. As a corollary we get that if there are only countable many reals in L, then the covering property holds for Σ12 sets.