4 resultados para Gates
em CaltechTHESIS
Resumo:
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security.
At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level.
In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations.
In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction.
In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.
Resumo:
A recirculating charge-coupled device structure has been devised. Entrance and exit gates allow a signal to be admitted, recirculated a given number of times, and then examined. In this way a small device permits simulation of a very long shift register without passing the signal through input and output diffusions. An oscilloscope motion picture demonstrating degradation of an actual circulating signal has been made. The performance of the device in simulating degradation of a signal by a very long shift register is well fit by a simple model based on transfer inefficiency.
Electrical properties of the mercury selenide on n-type chemically-cleaned silicon Schottky barrier have been studied. Barrier heights measured were 0.96 volts for the photoresponse technique and 0.90 volts for the current-voltage technique. These are the highest barriers yet reported on n-type silicon.
Resumo:
The influence upon the basic viscous flow about two axisymmetric bodies of (i) freestream turbulence level and (ii) the injection of small amounts of a drag-reducing polymer (Polyox WSR 301) into the test model boundary layer was investigated by the schlieren flow visualization technique. The changes in the type and occurrence of cavitation inception caused by the subsequent modifications in the viscous flow were studied. A nuclei counter using the holographic technique was built to monitor freestream nuclei populations and a few preliminary tests investigating the consequences of different populations on cavitation inception were carried out.
Both test models were observed to have a laminar separation over their respective test Reynolds number ranges. The separation on one test model was found to be insensitive to freestream turbulence levels of up to 3.75 percent. The second model was found to be very susceptible having its critical velocity reduced from 30 feet per second at a 0.04 percent turbulence level to 10 feet per second at a 3.75 percent turbulence level. Cavitation tests on both models at the lowest turbulence level showed the value of the incipient cavitation number and the type of cavitation were controlled by the presence of the laminar separation. Cavitation tests on the second model at 0.65 percent turbulence level showed no change in the inception index, but the appearance of the developed cavitation was altered.
The presence of Polyox in the boundary layer resulted in a cavitation suppression comparable to that found by other investigators. The elimination of the normally occurring laminar separation on these bodies by a polymer-induced instability in the laminar boundary layer was found to be responsible for the suppression of inception.
Freestream nuclei populations at test conditions were measured and it was found that if there were many freestream gas bubbles the normally present laminar separation was elminated and travelling bubble type cavitation occurred - the value of the inception index then depended upon the nuclei population. In cases where the laminar separation was present it was found that the value of the inception index was insensitive to the free stream nuclei populations.
Resumo:
The ability to sense mechanical force is vital to all organisms to interact with and respond to stimuli in their environment. Mechanosensation is critical to many physiological functions such as the senses of hearing and touch in animals, gravitropism in plants and osmoregulation in bacteria. Of these processes, the best understood at the molecular level involve bacterial mechanosensitive channels. Under hypo-osmotic stress, bacteria are able to alleviate turgor pressure through mechanosensitive channels that gate directly in response to tension in the membrane lipid bilayer. A key participant in this response is the mechanosensitive channel of large conductance (MscL), a non-selective channel with a high conductance of ~3 nS that gates at tensions close to the membrane lytic tension.
It has been appreciated since the original discovery by C. Kung that the small subunit size (~130 to 160 residues) and the high conductance necessitate that MscL forms a homo-oligomeric channel. Over the past 20 years of study, the proposed oligomeric state of MscL has ranged from monomer to hexamer. Oligomeric state has been shown to vary between MscL homologues and is influenced by lipid/detergent environment. In this thesis, we report the creation of a chimera library to systematically survey the correlation between MscL sequence and oligomeric state to identify the sequence determinants of oligomeric state. Our results demonstrate that although there is no combination of sequences uniquely associated with a given oligomeric state (or mixture of oligomeric states), there are significant correlations. In the quest to characterize the oligomeric state of MscL, an exciting discovery was made about the dynamic nature of the MscL complex. We found that in detergent solution, under mild heating conditions (37 °C – 60 °C), subunits of MscL can exchange between complexes, and the dynamics of this process are sensitive to the protein sequence.
Extensive efforts were made to produce high diffraction quality crystals of MscL for the determination of a high resolution X-ray crystal structure of a full length channel. The surface entropy reduction strategy was applied to the design of S. aureus MscL variants and while the strategy appears to have improved the crystallizability of S. aureus MscL, unfortunately the diffraction qualities of these crystals were not significantly improved. MscL chimeras were also screened for crystallization in various solubilization detergents, but also failed to yield high quality crystals.
MscL is a fascinating protein and continues to serve as a model system for the study of the structural and functional properties of mechanosensitive channels. Further characterization of the MscL chimera library will offer more insight into the characteristics of the channel. Of particular interest are the functional characterization of the chimeras and the exploration of the physiological relevance of intercomplex subunit exchange.