3 resultados para GALAXIES: GROUPS: GENERAL
em CaltechTHESIS
Resumo:
Galaxies evolve throughout the history of the universe from the first star-forming sources, through gas-rich asymmetric structures with rapid star formation rates, to the massive symmetrical stellar systems observed at the present day. Determining the physical processes which drive galaxy formation and evolution is one of the most important questions in observational astrophysics. This thesis presents four projects aimed at improving our understanding of galaxy evolution from detailed measurements of star forming galaxies at high redshift.
We use resolved spectroscopy of gravitationally lensed z ≃ 2 - 3 star forming galaxies to measure their kinematic and star formation properties. The combination of lensing with adaptive optics yields physical resolution of ≃ 100 pc, sufficient to resolve giant Hii regions. We find that ~ 70 % of galaxies in our sample display ordered rotation with high local velocity dispersion indicating turbulent thick disks. The rotating galaxies are gravitationally unstable and are expected to fragment into giant clumps. The size and dynamical mass of giant Hii regions are in agreement with predictions for such clumps indicating that gravitational instability drives the rapid star formation. The remainder of our sample is comprised of ongoing major mergers. Merging galaxies display similar star formation rate, morphology, and local velocity dispersion as isolated sources, but their velocity fields are more chaotic with no coherent rotation.
We measure resolved metallicity in four lensed galaxies at z = 2.0 − 2.4 from optical emission line diagnostics. Three rotating galaxies display radial gradients with higher metallicity at smaller radii, while the fourth is undergoing a merger and has an inverted gradient with lower metallicity at the center. Strong gradients in the rotating galaxies indicate that they are growing inside-out with star formation fueled by accretion of metal-poor gas at large radii. By comparing measured gradients with an appropriate comparison sample at z = 0, we demonstrate that metallicity gradients in isolated galaxies must flatten at later times. The amount of size growth inferred by the gradients is in rough agreement with direct measurements of massive galaxies. We develop a chemical evolution model to interpret these data and conclude that metallicity gradients are established by a gradient in the outflow mass loading factor, combined with radial inflow of metal-enriched gas.
We present the first rest-frame optical spectroscopic survey of a large sample of low-luminosity galaxies at high redshift (L < L*, 1.5 < z < 3.5). This population dominates the star formation density of the universe at high redshifts, yet such galaxies are normally too faint to be studied spectroscopically. We take advantage of strong gravitational lensing magnification to compile observations for a sample of 29 galaxies using modest integration times with the Keck and Palomar telescopes. Balmer emission lines confirm that the sample has a median SFR ∼ 10 M_sun yr^−1 and extends to lower SFR than has been probed by other surveys at similar redshift. We derive the metallicity, dust extinction, SFR, ionization parameter, and dynamical mass from the spectroscopic data, providing the first accurate characterization of the star-forming environment in low-luminosity galaxies at high redshift. For the first time, we directly test the proposal that the relation between galaxy stellar mass, star formation rate, and gas phase metallicity does not evolve. We find lower gas phase metallicity in the high redshift galaxies than in local sources with equivalent stellar mass and star formation rate, arguing against a time-invariant relation. While our result is preliminary and may be biased by measurement errors, this represents an important first measurement that will be further constrained by ongoing analysis of the full data set and by future observations.
We present a study of composite rest-frame ultraviolet spectra of Lyman break galaxies at z = 4 and discuss implications for the distribution of neutral outflowing gas in the circumgalactic medium. In general we find similar spectroscopic trends to those found at z = 3 by earlier surveys. In particular, absorption lines which trace neutral gas are weaker in less evolved galaxies with lower stellar masses, smaller radii, lower luminosity, less dust, and stronger Lyα emission. Typical galaxies are thus expected to have stronger Lyα emission and weaker low-ionization absorption at earlier times, and we indeed find somewhat weaker low-ionization absorption at higher redshifts. In conjunction with earlier results, we argue that the reduced low-ionization absorption is likely caused by lower covering fraction and/or velocity range of outflowing neutral gas at earlier epochs. This result has important implications for the hypothesis that early galaxies were responsible for cosmic reionization. We additionally show that fine structure emission lines are sensitive to the spatial extent of neutral gas, and demonstrate that neutral gas is concentrated at smaller galactocentric radii in higher redshift galaxies.
The results of this thesis present a coherent picture of galaxy evolution at high redshifts 2 ≲ z ≲ 4. Roughly 1/3 of massive star forming galaxies at this period are undergoing major mergers, while the rest are growing inside-out with star formation occurring in gravitationally unstable thick disks. Star formation, stellar mass, and metallicity are limited by outflows which create a circumgalactic medium of metal-enriched material. We conclude by describing some remaining open questions and prospects for improving our understanding of galaxy evolution with future observations of gravitationally lensed galaxies.
Resumo:
The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel reducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of residually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence. One of the main results answers a question of Abért and Elek by showing that within any free weak equivalence class the isomorphism relation does not admit classification by countable structures. The proof relies on affirming a conjecture of Ioana by showing that the product of a free action with a Bernoulli shift is weakly equivalent to the original action. Chapter 5 studies the relationship between mixing and freeness properties of measure preserving actions. Chapter 6 studies how approximation properties of ergodic actions and unitary representations are reflected group theoretically and also operator algebraically via a group's reduced C*-algebra. Chapter 7 is an appendix which includes various results on mixing via filters and on Gaussian actions.
Resumo:
Combinatorial configurations known as t-designs are studied. These are pairs ˂B, ∏˃, where each element of B is a k-subset of ∏, and each t-design occurs in exactly λ elements of B, for some fixed integers k and λ. A theory of internal structure of t-designs is developed, and it is shown that any t-design can be decomposed in a natural fashion into a sequence of “simple” subdesigns. The theory is quite similar to the analysis of a group with respect to its normal subgroups, quotient groups, and homomorphisms. The analogous concepts of normal subdesigns, quotient designs, and design homomorphisms are all defined and used.
This structure theory is then applied to the class of t-designs whose automorphism groups are transitive on sets of t points. It is shown that if G is a permutation group transitive on sets of t letters and ф is any set of letters, then images of ф under G form a t-design whose parameters may be calculated from the group G. Such groups are discussed, especially for the case t = 2, and the normal structure of such designs is considered. Theorem 2.2.12 gives necessary and sufficient conditions for a t-design to be simple, purely in terms of the automorphism group of the design. Some constructions are given.
Finally, 2-designs with k = 3 and λ = 2 are considered in detail. These designs are first considered in general, with examples illustrating some of the configurations which can arise. Then an attempt is made to classify all such designs with an automorphism group transitive on pairs of points. Many cases are eliminated of reduced to combinations of Steiner triple systems. In the remaining cases, the simple designs are determined to consist of one infinite class and one exceptional case.