16 resultados para Functional Independence Measure

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waking up from a dreamless sleep, I open my eyes, recognize my wife’s face and am filled with joy. In this thesis, I used functional Magnetic Resonance Imaging (fMRI) to gain insights into the mechanisms involved in this seemingly simple daily occurrence, which poses at least three great challenges to neuroscience: how does conscious experience arise from the activity of the brain? How does the brain process visual input to the point of recognizing individual faces? How does the brain store semantic knowledge about people that we know? To start tackling the first question, I studied the neural correlates of unconscious processing of invisible faces. I was unable to image significant activations related to the processing of completely invisible faces, despite existing reports in the literature. I thus moved on to the next question and studied how recognition of a familiar person was achieved in the brain; I focused on finding invariant representations of person identity – representations that would be activated any time we think of a familiar person, read their name, see their picture, hear them talk, etc. There again, I could not find significant evidence for such representations with fMRI, even in regions where they had previously been found with single unit recordings in human patients (the Jennifer Aniston neurons). Faced with these null outcomes, the scope of my investigations eventually turned back towards the technique that I had been using, fMRI, and the recently praised analytical tools that I had been trusting, Multivariate Pattern Analysis. After a mostly disappointing attempt at replicating a strong single unit finding of a categorical response to animals in the right human amygdala with fMRI, I put fMRI decoding to an ultimate test with a unique dataset acquired in the macaque monkey. There I showed a dissociation between the ability of fMRI to pick up face viewpoint information and its inability to pick up face identity information, which I mostly traced back to the poor clustering of identity selective units. Though fMRI decoding is a powerful new analytical tool, it does not rid fMRI of its inherent limitations as a hemodynamics-based measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.

In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-π interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-π interaction with dopamine.

Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.

Chapter 4 identifies a cation-π interaction between glutamate and a tyrosine residue on loop C in the GluClβ receptor. Using the recently published crystal structure of the homologous GluClα receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.

Chapter 5 examines inherent properties of the GluClα receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring electrical activity in large numbers of cells with high spatial and temporal resolution is a fundamental problem for the study of neural development and information processing. To address this problem, we have constructed FlaSh: a novel, genetically-encoded probe that can be used to measure trans-membrane voltage in single cells. We fused a modified green fluorescent protein (GFP) into a voltage-sensitive potassium channel so that voltage dependent rearrangements in the potassium channel induce changes in the fluorescence of GFP. A voltage sensor encoded into DNA has the advantage that it may be introduced into an organism non-invasively and targeted to specific developmental stages, brain regions, cell types, and sub-cellular compartments.

We also describe modifications to FlaSh that shift its color, kinetics, and dynamic range. We used multiple green fluorescent proteins to produce variants of the FlaSh sensor that generate ratiometric signal output via fluorescence resonance energy transfer (FRET). Finally, we describe initial work toward FlaSh variants that are sensitive to G-protein coupled receptor (GPCR) activation. These sensors can be used to design functional assays for receptor activation in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cdc48/p97 is an essential, highly abundant hexameric member of the AAA (ATPase associated with various cellular activities) family. It has been linked to a variety of processes throughout the cell but it is best known for its role in the ubiquitin proteasome pathway. In this system it is believed that Cdc48 behaves as a segregase, transducing the chemical energy of ATP hydrolysis into mechanical force to separate ubiquitin-conjugated proteins from their tightly-bound partners.

Current models posit that Cdc48 is linked to its substrates through a variety of adaptor proteins, including a family of seven proteins (13 in humans) that contain a Cdc48-binding UBX domain. As such, due to the complexity of the network of adaptor proteins for which it serves as the hub, Cdc48/p97 has the potential to exert a profound influence on the ubiquitin proteasome pathway. However, the number of known substrates of Cdc48/p97 remains relatively small, and smaller still is the number of substrates that have been linked to a specific UBX domain protein. As such, the goal of this dissertation research has been to discover new substrates and better understand the functions of the Cdc48 network. With this objective in mind, we established a proteomic screen to assemble a catalog of candidate substrate/targets of the Ubx adaptor system.

Here we describe the implementation and optimization of a cutting-edge quantitative mass spectrometry method to measure relative changes in the Saccharomyces cerevisiae proteome. Utilizing this technology, and in order to better understand the breadth of function of Cdc48 and its adaptors, we then performed a global screen to identify accumulating ubiquitin conjugates in cdc48-3 and ubxΔ mutants. In this screen different ubx mutants exhibited reproducible patterns of conjugate accumulation that differed greatly from each other, pointing to various unexpected functional specializations of the individual Ubx proteins.

As validation of our mass spectrometry findings, we then examined in detail the endoplasmic-reticulum bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. In these studies ubx2Δ cells were deficient in processing of Spt23 to its active p90 form, and in localizing p90 to the nucleus. Additionally, consistent with reduced processing of Spt23, ubx2Δ cells demonstrated a defect in expression of their target gene OLE1, a fatty acid desaturase. Overall, this work demonstrates the power of proteomics as a tool to identify new targets of various pathways and reveals Ubx2 as a key regulator lipid membrane biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis belongs to the growing field of economic networks. In particular, we develop three essays in which we study the problem of bargaining, discrete choice representation, and pricing in the context of networked markets. Despite analyzing very different problems, the three essays share the common feature of making use of a network representation to describe the market of interest.

In Chapter 1 we present an analysis of bargaining in networked markets. We make two contributions. First, we characterize market equilibria in a bargaining model, and find that players' equilibrium payoffs coincide with their degree of centrality in the network, as measured by Bonacich's centrality measure. This characterization allows us to map, in a simple way, network structures into market equilibrium outcomes, so that payoffs dispersion in networked markets is driven by players' network positions. Second, we show that the market equilibrium for our model converges to the so called eigenvector centrality measure. We show that the economic condition for reaching convergence is that the players' discount factor goes to one. In particular, we show how the discount factor, the matching technology, and the network structure interact in a very particular way in order to see the eigenvector centrality as the limiting case of our market equilibrium.

We point out that the eigenvector approach is a way of finding the most central or relevant players in terms of the “global” structure of the network, and to pay less attention to patterns that are more “local”. Mathematically, the eigenvector centrality captures the relevance of players in the bargaining process, using the eigenvector associated to the largest eigenvalue of the adjacency matrix of a given network. Thus our result may be viewed as an economic justification of the eigenvector approach in the context of bargaining in networked markets.

As an application, we analyze the special case of seller-buyer networks, showing how our framework may be useful for analyzing price dispersion as a function of sellers and buyers' network positions.

Finally, in Chapter 3 we study the problem of price competition and free entry in networked markets subject to congestion effects. In many environments, such as communication networks in which network flows are allocated, or transportation networks in which traffic is directed through the underlying road architecture, congestion plays an important role. In particular, we consider a network with multiple origins and a common destination node, where each link is owned by a firm that sets prices in order to maximize profits, whereas users want to minimize the total cost they face, which is given by the congestion cost plus the prices set by firms. In this environment, we introduce the notion of Markovian traffic equilibrium to establish the existence and uniqueness of a pure strategy price equilibrium, without assuming that the demand functions are concave nor imposing particular functional forms for the latency functions. We derive explicit conditions to guarantee existence and uniqueness of equilibria. Given this existence and uniqueness result, we apply our framework to study entry decisions and welfare, and establish that in congested markets with free entry, the number of firms exceeds the social optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.

For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.

To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.

The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.

The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.

Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.

We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current measures of global gene expression analyses, such as correlation and mutual information-based approaches, largely depend on the degree of association between mRNA levels and to a lesser extent on variability. I develop and implement a new approach, called the Ratiometric method, which is based on the coefficient of variation of the expression ratio of two genes, relying more on variation than previous methods. The advantage of such modus operandi is the ability to detect possible gene pair interactions regardless of the degree of expression dispersion across the sample group. Gene pairs with low expression dispersion, i.e., their absolute expressions remain constant across the sample group, are systematically missed by correlation and mutual information analyses. The superiority of the Ratiometric method in finding these gene pair interactions is demonstrated in a data set of RNA-seq B-cell samples from the 1000 Genomes Project Consortium. The Ratiometric method renders a more comprehensive recovery of KEGG pathways and GO-terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of this thesis is the use of high-throughput sequencing technologies in functional genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with sequencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts of it are of a more methodological nature while others describe the application of these functional genomic tools to address various biological problems. A significant part of the research presented here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.

The first part of the thesis focuses on the structure and diversity of the human transcriptome. Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based examination of the performance of some of the most popular computational tools used to assemble and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-seq measurements methodological considerations.

The second part presents several studies applying functional genomic tools to the study of the regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 contains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation into the curious phenomenon of the physical association of nuclear transcription factors with mitochondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial and plastid genomes.

The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was developed, and the results of this activity are presented in Chapter 9. These metrics were later used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which these metrics also played a major role) is presented.

The fourth part presents the results of some additional projects the author has been involved in, including the study of the role of the Piwi protein in the transcriptional regulation of transposon expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the heterogeneity of gene expression during cellular reprogramming (Chapter 13).

The last part of the thesis provides a review of the results of the ENCODE Project and the interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical developments and their impact on the field of functional genomics (Chapter 14), and a discussion of some so far insufficiently explored research areas, the future study of which will, in the opinion of the author, provide deep insights into many fundamental but not yet completely answered questions about the transcriptional biology of eukaryotes and its regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods that exploit the intrinsic locality of molecular interactions show significant promise in making tractable the electronic structure calculation of large-scale systems. In particular, embedded density functional theory (e-DFT) offers a formally exact approach to electronic structure calculations in which the interactions between subsystems are evaluated in terms of their electronic density. In the following dissertation, methodological advances of embedded density functional theory are described, numerically tested, and applied to real chemical systems.

First, we describe an e-DFT protocol in which the non-additive kinetic energy component of the embedding potential is treated exactly. Then, we present a general implementation of the exact calculation of the non-additive kinetic potential (NAKP) and apply it to molecular systems. We demonstrate that the implementation using the exact NAKP is in excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures.

Next, we introduce density-embedding techniques to enable the accurate and stable calculation of correlated wavefunction (CW) in complex environments. Embedding potentials calculated using e-DFT introduce the effect of the environment on a subsystem for CW calculations (WFT-in-DFT). We demonstrate that WFT-in-DFT calculations are in good agreement with CW calculations performed on the full complex.

We significantly improve the numerics of the algorithm by enforcing orthogonality between subsystems by introduction of a projection operator. Utilizing the projection-based embedding scheme, we rigorously analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using CWs, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We develop an algorithm which corrects this term and demonstrate the accuracy of this corrected embedding scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.

Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.

Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.

In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.

An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.

Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.

Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.

In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.

In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.

Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the roles of microorganisms in environmental settings by linking phylogenetic identity to metabolic function is a key challenge in delineating their broad-scale impact and functional diversity throughout the biosphere. This work addresses and extends such questions in the context of marine methane seeps, which represent globally relevant conduits for an important greenhouse gas. Through the application and development of a range of culture-independent tools, novel habitats for methanotrophic microbial communities were identified, established settings were characterized in new ways, and potential past conditions amenable to methane-based metabolism were proposed. Biomass abundance and metabolic activity measures – both catabolic and anabolic – demonstrated that authigenic carbonates associated with seep environments retain methanotrophic activity, not only within high-flow seep settings but also in adjacent locations exhibiting no visual evidence of chemosynthetic communities. Across this newly extended habitat, microbial diversity surveys revealed archaeal assemblages that were shaped primarily by seepage activity level and bacterial assemblages influenced more substantially by physical substrate type. In order to reliably measure methane consumption rates in these and other methanotrophic settings, a novel method was developed that traces deuterium atoms from the methane substrate into aqueous medium and uses empirically established scaling factors linked to radiotracer rate techniques to arrive at absolute methane consumption values. Stable isotope probing metaproteomic investigations exposed an array of functional diversity both within and beyond methane oxidation- and sulfate reduction-linked metabolisms, identifying components of each proposed enzyme in both pathways. A core set of commonly occurring unannotated protein products was identified as promising targets for future biochemical investigation. Physicochemical and energetic principles governing anaerobic methane oxidation were incorporated into a reaction transport model that was applied to putative settings on ancient Mars. Many conditions enabled exergonic model reactions, marking the metabolism and its attendant biomarkers as potentially promising targets for future astrobiological investigations. This set of inter-related investigations targeting methane metabolism extends the known and potential habitat of methanotrophic microbial communities and provides a more detailed understanding of their activity and functional diversity.