2 resultados para Fresh-water

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake of Cu, Zn, and Cd by fresh water plankton was studied by analyzing samples of water and plankton from six lakes in southern California. Co, Pb, Mn, Fe, Na, K, Mg, Ca, Sr, Ba, and Al were also determined in the plankton samples. Special precautions were taken during sampling and analysis to avoid metal contamination.

The relation between aqueous metal concentrations and the concentrations of metals in plankton was studied by plotting aqueous and plankton metal concentrations vs time and comparing the plots. No plankton metal plot showed the same changes as its corresponding aqueous metal plot, though long-term trends were similar. Thus, passive sorption did not completely explain plankton metal uptake.

The fractions of Cu, Zn, and Cd in lake water which were associated with plankton were calculated and these fractions were less than 1% in every case.

To see whether or not plankton metal uptake could deplete aqueous metal concentrations by measurable amounts (e.g. 20%) in short periods (e.g. less than six days), three integrated rate equations were used as models of plankton metal sorption. Parameters for the equations were taken from actual field measurements. Measurable reductions in concentration within short times were predicted by all three equations when the concentration factor was greater than 10^5. All Cu concentration factors were less than 10^5.

The role of plankton was regulating metal concentrations considered in the context of a model of trace metal chemistry in lakes. The model assumes that all particles can be represented by a single solid phase and that the solid phase controls aqueous metal concentrations. A term for the rate of in situ production of particulate matter is included and primary productivity was used for this parameter. In San Vicente Reservoir, the test case, the rate of in situ production of particulate matter was of the same order of magnitude as the rate of introduction of particulate matter by the influent stream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical and experimental studies were made on two classes of buoyant jet problems, namely:

1) an inclined, round buoyant yet in a stagnant environment with linear density-stratification;

2) a round buoyant jet in a uniform cross stream of homogenous density.

Using the integral technique of analysis, assuming similarity, predictions can be made for jet trajectory, widths, and dilution ratios, in a density-stratified or flowing environment. Such information is of great importance in the design of disposal systems for sewage effluent into the ocean or waste gases into the atmosphere.

The present study of a buoyant jet in a stagnant environment has extended the Morton type of analysis to cover the effect of the initial angle of discharge. Numerical solutions have been presented for a range of initial conditions. Laboratory experiments were conducted for photographic observations of the trajectories of dyed jets. In general the observed jet forms agreed well with the calculated trajectories and nominal half widths when the value of the entrainment coefficient was taken to be α = 0.082, as previously suggested by Morton.

The problem of a buoyant jet in a uniform cross stream was analyzed by assuming an entrainment mechanism based upon the vector difference between the characteristic jet velocity and the ambient velocity. The effect of the unbalanced pressure field on the sides of the jet flow was approximated by a gross drag term. Laboratory flume experiments with sinking jets which are directly analogous to buoyant jets were performed. Salt solutions were injected into fresh water at the free surface in a flume. The jet trajectories, dilution ratios and jet half widths were determined by conductivity measurements. The entrainment coefficient, α, and drag coefficient, Cd, were found from the observed jet trajectories and dilution ratios. In the ten cases studied where jet Froude number ranged from 10 to 80 and velocity ratio (jet: current) K from 4 to 16, α varied from 0.4 to 0.5 and Cd from 1.7 to 0.1. The jet mixing motion for distance within 250D was found to be dominated by the self-generated turbulence, rather than the free-stream turbulence. Similarity of concentration profiles has also been discussed.