4 resultados para Frederick Douglass and Waterford
em CaltechTHESIS
Resumo:
FGF/Erk MAP Kinase Signaling is a central regulator of mouse embryonic stem cell (mESC) self-renewal, pluripotency and differentiation. However, the mechanistic connection between this signaling pathway activity and the gene circuits stabilizing mESCs in vitro remain unclear. Here we show that FGF signaling post-transcriptionally regulates the mESC transcription factor network by controlling the expression of Brf1 (zfp36l1), an AU-rich element mRNA binding protein. Changes in Brf1 level disrupts the expression of core pluripotency-associated genes and attenuates mESC self-renewal without inducing differentiation. These regulatory effects are mediated by rapid and direct destabilization of Brf1 targets, such as Nanog mRNA. Interestingly, enhancing Brf1 expression does not compromise mESC pluripotency, but does preferentially regulate differentiation to mesendoderm by accelerating the expression of primitive streak markers. Together, these studies demonstrate that FGF signals utilize targeted mRNA degradation by Brf1 to enable rapid post-transcriptional control of gene expression.
A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen
Resumo:
The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu-1, using a balloon-borne instrument at an atmospheric depth of ~5 g cm-2. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintilla tors used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from ~ 0.3 amu at boron to ~ 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere, the results are ^(10)B/B = 0.33^(+0.17)_(-0.11), ^(13)C/C = 0.06^(+0.13)_(-0.01), and ^(15)N/N = 0.42 (+0.19)_(-0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements.
Resumo:
The binding and catalytic properties of hen's egg white lysozyme have been studied by a variety of techniques. These studies show that the enzyme has three contiguous binding subsites, A, B, and C. The application of nuclear magnetic resonance (NMR) spectroscopy to probe the binding environment of several saccharides to lysozyme has demonstrated that the reducing end sugar rings of chitotriose, chitobiose and the β-form of N-acetylglucosamine all bind in subsite C. The central sugar ring of chitotriose and the sugar ring at the nonreducing end of chitobiose were found to bind in subsite B, while the nonreducing end sugar residue of chitotriose occupied subsite A. The dynamics of the binding process has also been investigated by NMR. The formation rate constant of chitobiose--and chitotriose-enzyme complexes were found to be about 4 X 10-6 M-1 sec-1 with small activation energies.
The stereochemical path of the lysozyme catalyzed hydrolysis of glycosidic bonds has been shown to proceed with at least 99.7% retention of configuration at C-1 of the sugar. The lysozyme catalyzed hydrolysis of glucosidic bonds has been shown to be largely carbonium ion in character by virtue of the α-deuterium kinetic isotope effect (kH/kD = 1.11) observed for the reaction. It is probable that the mechanism of action of the enzyme involves a carbonium ion intermediate which is stereospecifically quenched by solvent. However, acetamido group participation cannot be ruled out for natural substrates.
Resumo:
The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation
Uʋ=µ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).
Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is
I = (R + 16π p) (-g)1/2 d4x,
where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.
The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.
By introducing three scalar fields defined by
ρ ᵴ = ∇λ + ∇x(xi + ∇xɣi)
(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.