2 resultados para Fragility

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallic glass has since its debut been of great research interest due to its profound scientific significance. Magnetic metallic glasses are of special interest because of their promising technological applications. In this thesis, we introduced a novel series of Fe-based alloys and offer a holistic review of the physics and properties of these alloys. A systematic alloy development and optimization method was introduced, with experimental implementation on transition metal based alloying system. A deep understanding on the influencing factors of glass forming ability was brought up and discussed, based on classical nucleation theory. Experimental data of the new Fe-based amorphous alloys were interpreted to further analyze those influencing factors, including reduced glass transition temperature, fragility, and liquid-crystal interface free energy. Various treatments (fluxing, overheating, etc.) were discussed for their impacts on the alloying systems' thermodynamics and glass forming ability. Multiple experimental characterization methods were discussed to measure the alloys' soft magnetic properties. In addition to theoretical and experimental investigation, we also gave a detailed numerical analysis on the rapid-discharge-heating-and-forming platform. It is a novel experimental system which offers extremely fast heating rate for calorimetric characterization and alloy deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toppling analysis of a precariously balanced rock (PBR) can provide insights into the nature of ground motion that has not occurred at that location in the past and, by extension, realistic constraints on peak ground motions for use in engineering design. Earlier approaches have targeted simplistic 2-D models of the rock or modeled the rock-pedestal contact using spring-damper assemblies that require re-calibration for each rock. These analyses also assume that the rock does not slide on the pedestal. Here, a method to model PBRs in three dimensions is presented. The 3-D model is created from a point cloud of the rock, the pedestal, and their interface, obtained using Terrestrial Laser Scanning (TLS). The dynamic response of the model under earthquake excitation is simulated using a rigid body dynamics algorithm. The veracity of this approach is demonstrated by comparisons against data from shake table experiments. Fragility maps for toppling probability of the Echo Cliff PBR and the Pacifico PBR as a function of various ground motion parameters, rock-pedestal interface friction coefficient, and excitation direction are presented. The seismic hazard at these PBR locations is estimated using these maps. Additionally, these maps are used to assess whether the synthetic ground motions at these locations resulting from scenario earthquakes on the San Andreas Fault are realistic (toppling would indicate that the ground motions are unrealistically high).