2 resultados para Formal Verification Methods
em CaltechTHESIS
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.
Resumo:
The intent of this study is to provide formal apparatus which facilitates the investigation of problems in the methodology of science. The introduction contains several examples of such problems and motivates the subsequent formalism.
A general definition of a formal language is presented, and this definition is used to characterize an individual’s view of the world around him. A notion of empirical observation is developed which is independent of language. The interplay of formal language and observation is taken as the central theme. The process of science is conceived as the finding of that formal language that best expresses the available experimental evidence.
To characterize the manner in which a formal language imposes structure on its universe of discourse, the fundamental concepts of elements and states of a formal language are introduced. Using these, the notion of a basis for a formal language is developed as a collection of minimal states distinguishable within the language. The relation of these concepts to those of model theory is discussed.
An a priori probability defined on sets of observations is postulated as a reflection of an individual’s ontology. This probability, in conjunction with a formal language and a basis for that language, induces a subjective probability describing an individual’s conceptual view of admissible configurations of the universe. As a function of this subjective probability, and consequently of language, a measure of the informativeness of empirical observations is introduced and is shown to be intuitively plausible – particularly in the case of scientific experimentation.
The developed formalism is then systematically applied to the general problems presented in the introduction. The relationship of scientific theories to empirical observations is discussed and the need for certain tacit, unstatable knowledge is shown to be necessary to fully comprehend the meaning of realistic theories. The idea that many common concepts can be specified only by drawing on knowledge obtained from an infinite number of observations is presented, and the problems of reductionism are examined in this context.
A definition of when one formal language can be considered to be more expressive than another is presented, and the change in the informativeness of an observation as language changes is investigated. In this regard it is shown that the information inherent in an observation may decrease for a more expressive language.
The general problem of induction and its relation to the scientific method are discussed. Two hypotheses concerning an individual’s selection of an optimal language for a particular domain of discourse are presented and specific examples from the introduction are examined.