3 resultados para Forecasting.

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance.

The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands.

In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site.

Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and detennining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification.

Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to clarify the role of wind as a landscape and degradation process in dry lands. The role of remote sensing in monitoring the world's drylands is discussed in terms of optimal remote sensing platform characteristics and surface phenomena which may be monitored in order to identify areas at risk of desertification. A desertification indicator is proposed that unifies consideration of environmental and human variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long paleoseismic histories are necessary for understanding the full range of behavior of faults, as the most destructive events often have recurrence intervals longer than local recorded history. The Sunda megathrust, the interface along which the Australian plate subducts beneath Southeast Asia, provides an ideal natural laboratory for determining a detailed paleoseismic history over many seismic cycles. The outer-arc islands above the seismogenic portion of the megathrust cyclically rise and subside in response to processes on the underlying megathrust, providing uncommonly good illumination of megathrust behavior. Furthermore, the growth histories of coral microatolls, which record tectonic uplift and subsidence via relative sea level, can be used to investigate the detailed coseismic and interseismic deformation patterns. One particularly interesting area is the Mentawai segment of the megathrust, which has been shown to characteristically fail in a series of ruptures over decades, rather than a single end-to-end rupture. This behavior has been termed a seismic “supercycle.” Prior to the current rupture sequence, which began in 2007, the segment previously ruptured during the 14th century, the late 16th to late 17th century, and most recently during historical earthquakes in 1797 and 1833. In this study, we examine each of these previous supercycles in turn.

First, we expand upon previous analysis of the 1797–1833 rupture sequence with a comprehensive review of previously published coral microatoll data and the addition of a significant amount of new data. We present detailed maps of coseismic uplift during the two great earthquakes and of interseismic deformation during the periods 1755–1833 and 1950–1997 and models of the corresponding slip and coupling on the underlying megathrust. We derive magnitudes of Mw 8.7–9.0 for the two historical earthquakes, and determine that the 1797 earthquake fundamentally changed the state of coupling on the fault for decades afterward. We conclude that while major earthquakes generally do not involve rupture of the entire Mentawai segment, they undoubtedly influence the progression of subsequent ruptures, even beyond their own rupture area. This concept is of vital importance for monitoring and forecasting the progression of the modern rupture sequence.

Turning our attention to the 14th century, we present evidence of a shallow slip event in approximately A.D. 1314, which preceded the “conventional” megathrust rupture sequence. We calculate a suite of slip models, slightly deeper and/or larger than the 2010 Pagai Islands earthquake, that are consistent with the large amount of subsidence recorded at our study site. Sea-level records from older coral microatolls suggest that these events occur at least once every millennium, but likely far less frequently than their great downdip neighbors. The revelation that shallow slip events are important contributors to the seismic cycle of the Mentawai segment further complicates our understanding of this subduction megathrust and our assessment of the region’s exposure to seismic and tsunami hazards.

Finally, we present an outline of the complex intervening rupture sequence that took place in the 16th and 17th centuries, which involved at least five distinct uplift events. We conclude that each of the supercycles had unique features, and all of the types of fault behavior we observe are consistent with highly heterogeneous frictional properties of the megathrust beneath the south-central Mentawai Islands. We conclude that the heterogeneous distribution of asperities produces terminations and overlap zones between fault ruptures, resulting in the seismic “supercycle” phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.

We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.