7 resultados para Flat plate

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A zero pressure gradient boundary layer over a flat plate is subjected to step changes in thermal condition at the wall, causing the formation of internal, heated layers. The resulting temperature fluctuations and their corresponding density variations are associated with turbulent coherent structures. Aero-optical distortion occurs when light passes through the boundary layer, encountering the changing index of refraction resulting from the density variations. Instantaneous measurements of streamwise velocity, temperature and the optical deflection angle experienced by a laser traversing the boundary layer are made using hot and cold wires and a Malley probe, respectively. Correlations of the deflection angle with the temperature and velocity records suggest that the dominant contribution to the deflection angle comes from thermally-tagged structures in the outer boundary layer with a convective velocity of approximately 0.8U∞. An examination of instantaneous temperature and velocity and their temporal gradients conditionally averaged around significant optical deflections shows behavior consistent with the passage of a heated vortex. Strong deflections are associated with strong negative temperature gradients, and strong positive velocity gradients where the sign of the streamwise velocity fluctuation changes. The power density spectrum of the optical deflections reveals associated structure size to be on the order of the boundary layer thickness. A comparison to the temperature and velocity spectra suggests that the responsible structures are smaller vortices in the outer boundary layer as opposed to larger scale motions. Notable differences between the power density spectra of the optical deflections and the temperature remain unresolved due to the low frequency response of the cold wire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches.

This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems.

Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented.

Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit.

Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plate tectonics shapes our dynamic planet through the creation and destruction of lithosphere. This work focuses on increasing our understanding of the processes at convergent and divergent boundaries through geologic and geophysical observations at modern plate boundaries. Recent work had shown that the subducting slab in central Mexico is most likely the flattest on Earth, yet there was no consensus about what caused it to originate. The first chapter of this thesis sets out to systematically test all previously proposed mechanisms for slab flattening on the Mexican case. What we have discovered is that there is only one model for which we can find no contradictory evidence. The lack of applicability of the standard mechanisms used to explain flat subduction in the Mexican example led us to question their applications globally. The second chapter expands the search for a cause of flat subduction, in both space and time. We focus on the historical record of flat slabs in South America and look for a correlation between the shallowing and steepening of slab segments with relation to the inferred thickness of the subducting oceanic crust. Using plate reconstructions and the assumption that a crustal anomaly formed on a spreading ridge will produce two conjugate features, we recreate the history of subduction along the South American margin and find that there is no correlation between the subduction of a bathymetric highs and shallow subduction. These studies have proven that a subducting crustal anomaly is neither a sufficient or necessary condition of flat slab subduction. The final chapter in this thesis looks at the divergent plate boundary in the Gulf of California. Through geologic reconnaissance mapping and an intensive paleomagnetic sampling campaign, we try to constrain the location and orientation of a widespread volcanic marker unit, the Tuff of San Felipe. Although the resolution of the applied magnetic susceptibility technique proved inadequate to contain the direction of the pyroclastic flow with high precision, we have been able to detect the tectonic rotation of coherent blocks as well as rotation within blocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fine-scale seismic structure of the central Mexico, southern Peru, and southwest Japan subduction zones is studied using intraslab earthquakes recorded by temporary and permanent regional seismic arrays. The morphology of the transition from flat to normal subduction is explored in central Mexico and southern Peru, while in southwest Japan the spatial coincidence of a thin ultra-slow velocity layer (USL) atop the flat slab with locations of slow slip events (SSEs) is explored. This USL is also observed in central Mexico and southern Peru, where its lateral extent is used as one constraint on the nature of the flat-to-normal transitions.

In western central Mexico, I find an edge to this USL which is coincident with the western boundary of the projected Orozco Fracture Zone (OFZ) region. Forward modeling of the 2D structure of the subducted Cocos plate using a finite-difference algorithm provides constraints on the velocity and geometry of the slab’s seismic structure in this region and confirms the location of the USL edge. I propose that the Cocos slab is currently fragmenting into a North Cocos plate and a South Cocos plate along the projection of the OFZ, by a process analogous to that which occurred when the Rivera plate separated from the proto-Cocos plate 10 Ma.

In eastern central Mexico, observations of a sharp transition in slab dip near the abrupt end of the Trans Mexican Volcanic Belt (TMVB) suggest a possible slab tear located within the subducted South Cocos plate. The eastern lateral extent of the USL is found to be coincident with these features and with the western boundary of a zone of decreased seismicity, indicating a change in structure which I interpret as evidence of a possible tear. Analysis of intraslab seismicity patterns and focal mechanism orientations and faulting types provides further support for a possible tear in the South Cocos slab. This potential tear, together with the tear along the projection of the OFZ to the northwest, indicates a slab rollback mechanism in which separate slab segments move independently, allowing for mantle flow between the segments.

In southern Peru, observations of a gradual increase in slab dip coupled with a lack of any gaps or vertical offsets in the intraslab seismicity suggest a smooth contortion of the slab. Concentrations of focal mechanisms at orientations which are indicative of slab bending are also observed along the change in slab geometry. The lateral extent of the USL atop the horizontal Nazca slab is found to be coincident with the margin of the projected linear continuation of the subducting Nazca Ridge, implying a causal relationship, but not a slab tear. Waveform modeling of the 2D structure in southern Peru provides constraints on the velocity and geometry of the slab’s seismic structure and confirms the absence of any tears in the slab.

In southwest Japan, I estimate the location of a possible USL along the Philippine Sea slab surface and find this region of low velocity to be coincident with locations of SSEs that have occurred in this region. I interpret the source of the possible USL in this region as fluids dehydrated from the subducting plate, forming a high pore-fluid pressure layer, which would be expected to decrease the coupling on the plate interface and promote SSEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigations described herein are both experimental and theoretical. An experimental technique is described by which the models tested could be oscillated sinusoidally in heave. The apparatus used to gather the unsteady lift, drag and pitching moment data is also described.

The models tested were two flat delta wings with apex angles of 15° and 30° and they had sharp leading edges to insure flow separation. The models were fabricated from 0.25 inch aluminum plate and were approximately one foot in length.

Three distinct types of flow were investigated: 1) fully wetted, 2) ventilated and 3) planing. The experimental data are compared with existing theories for steady motions in the case of fully wetted delta wings. Ventilation measurements, made only for the 30° model at 20° angle of attack, of lift and drag are presented.

A correction of the theory proposed by M.P. Tulin for high speed planing of slender bodies is presented and it is extended to unsteady motions. This is compared to the experimental measurements made at 6° and 12° angle of attack for the two models previously described.

This is the first extensive measurement of unsteady drag for any shape wing, the first measurement of unsteady planing forces, the first quantitative documentation of unstable oscillations near a free surface, and the first measurements of the unsteady forces on ventilated delta wings. The results of these investigations, both theoretical and experimental, are discussed and further investigations suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I develop the velocity and structure models for the Los Angeles Basin and Southern Peru. The ultimate goal is to better understand the geological processes involved in the basin and subduction zone dynamics. The results are obtained from seismic interferometry using ambient noise and receiver functions using earthquake- generated waves. Some unusual signals specific to the local structures are also studied. The main findings are summarized as follows:

(1) Los Angeles Basin

The shear wave velocities range from 0.5 to 3.0 km/s in the sediments, with lateral gradients at the Newport-Inglewood, Compton-Los Alamitos, and Whittier Faults. The basin is a maximum of 8 km deep along the profile, and the Moho rises to a depth of 17 km under the basin. The basin has a stretch factor of 2.6 in the center decreasing to 1.3 at the edges, and is in approximate isostatic equilibrium. This "high-density" (~1 km spacing) "short-duration" (~1.5 month) experiment may serve as a prototype experiment that will allow basins to be covered by this type of low-cost survey.

(2) Peruvian subduction zone

Two prominent mid-crust structures are revealed in the 70 km thick crust under the Central Andes: a low-velocity zone interpreted as partially molten rocks beneath the Western Cordillera – Altiplano Plateau, and the underthrusting Brazilian Shield beneath the Eastern Cordillera. The low-velocity zone is oblique to the present trench, and possibly indicates the location of the volcanic arcs formed during the steepening of the Oligocene flat slab beneath the Altiplano Plateau.

The Nazca slab changes from normal dipping (~25 degrees) subduction in the southeast to flat subduction in the northwest of the study area. In the flat subduction regime, the slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes a normal dipping geometry. The flat part closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the western half of the flat slab, which indicates the lack of melting and thus explains the cessation of the volcanism above. The velocity turns to normal values before the slab steepens again, indicating possible resumption of dehydration and ecologitization.

(3) Some unusual signals

Strong higher-mode Rayleigh waves due to the basin structure are observed in the periods less than 5 s. The particle motions provide a good test for distinguishing between the fundamental and higher mode. The precursor and coda waves relative to the interstation Rayleigh waves are observed, and modeled with a strong scatterer located in the active volcanic area in Southern Peru. In contrast with the usual receiver function analysis, multiples are extensively involved in this thesis. In the LA Basin, a good image is only from PpPs multiples, while in Peru, PpPp multiples contribute significantly to the final results.