4 resultados para FILM FORMATION

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of SO_2 with γ - Al_2O_3 and the deposition of H_2 permselective SiO_2 films have been investigated. The adsorption and oxidative adsorption of SO_2 on γ - Al_2O_3 have been examined at temperatures 500-700°C by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). At temperatures above 500°C most of SO_2 adsorbed on the strong sites on alumina. The adsorbed SO_2 species was characterized by an IR band at 1065 cm^(-1). The equilibrium coverage and initial rate of adsorption decreased with temperature suggesting a two-step adsorption. When γ - Al_2O_3 was contacted with a mixture of SO_2 and O_2, adsorption of SO_2 and oxidation of the adsorbed SO_2 to a surface sulfate characterized by broad IR bands at 1070 cm^(-1), 1390 cm^(-1) took place. The results of a series of TGA experiments under different atmospheres strongly suggest that surface SO_2 and surface sulfate involve the same active sites such that SO_2 adsorption is inhibited by already formed sulfate. The results also indicate a broad range of site strengths.

The desorption of adsorbed SO_2 and the reductive desorption of oxidatively adsorbed SO_2 have been investigated by microreactor experiments and thermogravimetric analysis (TGA). Temperature programmed reduction (TPR) of adsorbed SO_2 showed that SO_2 was desorbed without significant reaction with H_2 when H_2 concentration was low while considerable reaction occurred when 100% H_2 was used. SO_2 adsorbed on the strong sites on alumina was reduced to sulfur and H_2S. The isothermal reduction experiments of oxidatively adsorbed SO_2 reveal that the rate of reduction is very slow below 550°C even with 100% H_2. The reduction product is mainly composed of SO_2. TPR experiments of oxidatively adsorbed SO_2 showed that H_2S arose from a sulfate strongly chemisorbed on the surface.

Films of amorphous SiO_2 were deposited within the walls of porous Vycor tubes by SiH_4 oxidation in an opposing reactants geometry : SiH_4 was passed inside the tube while O_2 was passed outside the tube. The two reactants diffused opposite to each other and reacted within a narrow front inside the tube wall to form a thin SiO_2 film. Once the pores were plugged the reactants could not reach each other and the reaction stopped. At 450°C and 0.1 and 0.33 atm of SiH_4 and O_2, the reaction was complete within 15 minutes. The thickness of the SiO_2 film was estimated to be about 0.1 µm. Measurements of H_2 and N_2 permeation rates showed that the SiO_2 film was highly selective to H_2 permeation. The H_2:N_2 flux at 450°C varied between 2000-3000.

Thin SiO_2 films were heat treated in different gas mixtures to determine their stability in functioning as high-temperature hydrogen-permselective membranes. The films were heat-treated at 450-700°C in dry N_2, dry O_2, N_2-H_2O, and O_2-H_2O mixtures. The permeation rates of H_2 and N_2 changed depending on the original conditions of film formation as well as on the heat treatment. Heating in dry N_2 slowly reduced the permeation rates of both H_2 and N_2. Heating in a N_2-H_2O atmosphere led to a steeper decline of H_2 permeability. But the permeation rate of N_2 increased or decreased according to whether the film deposition had been carried out in the absence or presence of H_2O vapor, respectively. Thermal treatment in O_2 caused rapid decline of the permeation rates of H_2 and N_2 in films that were deposited under dry conditions. The decline was moderate in films deposited under wet conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.

First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.

Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.

For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.

With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.

As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main factors affecting solid-phase Si-metal interactions are reported in this work. The influence of the orientation of the Si substrates and the presence of impurities in metal films and at the Si-metal interface on the formation of nickel and chromium silicides have been demonstrated. We have observed that the formation and kinetic rate of growth of nickel silicides is strongly dependent on the orientation and crystallinity of the Si substrates; a fact which, up to date, has never been seriously investigated in silicide formation. Impurity contaminations in the Cr film and at the Si-Cr interface are the most dominant influencing factors in the formation and kinetic rate of growth of CrSi2. The potentiality and use of silicides as a diffusion barrier in metallization on silicon devices were also investigated.

Two phases, Ni2Si and NiSi, form simultaneously in two distinct sublayers in the reaction of Ni with amorphous Si, while only the former phase was observed on other substrates. On (111) oriented Si substrates the growth rate is about 2 to 3 times less than that on <100> or polycrystalline Si. Transmission electron micrographs establish-·that silicide layers grown on different substrates have different microcrystalline structures. The concept of grain-boundary diffusion is speculated to be an important factor in silicide formation.

The composition and kinetic rate of CrSi2 formation are not influenced by the underlying Si substrate. While the orientation of the Si substrate does not affect the formation of CrSi2 , the purity of the Cr film and the state of Si-Cr interface become the predominant factors in the reaction process. With an interposed layer of Pd2Si between the Cr film and the Si substrate, CrSi2 starts to form at a much lower temperature (400°C) relative to the Si-Cr system. However, the growth rate of CrSi2 is observed to be independent of the thickness of the Pd2Si layer. For both Si-Cr and Si-Pd2Si-Cr samples, the growth rate is linear with time with an activation energy of 1.7 ± 0.1 ev.

A tracer technique using radioactive 31Si (T1/2 = 2.26 h) was used to study the formation of CrSi2 on Pd2Si. It is established from this experiment that the growth of CrSi2 takes place partly by transport of Si directly from the Si substrate and partly by breaking Pd2Si bonds, making free Si atoms available for the growth process.

The role of CrSi2 in Pd-Al metallization on Si was studied. It is established that a thin CrSi2 layer can be used as a diffusion barrier to prevent Al from interacting with Pd2Si in the Pd-Al metallization on Si.

As a generalization of what has been observed for polycrystalline-Si-Al interaction, the reactions between polycrystalline Si (poly Si) and other metals were studied. The metals investigated include Ni, Cr, Pd, Ag and Au. For Ni, Cr and Pd, annealing results in silicide formation, at temperatures similar to those observed on single crystal Si substrates. For Al, Ag and Au, which form simple eutectics with Si annealing results in erosion of the poly Si layer and growth of Si crystallites in the metal films.

Backscattering spectrometry with 2.0 and 2.3 MeV 4He ions was the main analytical tool used in all our investigations. Other experimental techniques include the Read camera glancing angle x-ray diffraction, scanning electron, optical and transmission electron microscopy. Details of these analytical techniques are given in Chapter II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution to the magnetic uniaxial perpendicular anisotropy which arises from substrate constraint through magnetostrictive effects has been measured in Ni-Fe and Ni-Co thin films evaporated on substrates at room temperature. This was accomplished by measuring the perpendicular anisotropy before and after removal of the film from the substrate. Data are given for the fcc crystal structure regions of both alloy systems, but data for Ni-Co include compositions with less than 60% Ni which have a small percentage of the hcp phase mixed with the fcc phase. The constraint contribution to the perpendicular anisotropy correlates well with the value of the bulk magnetostriction constant using the equation ∆K˔=3/2λsσ. Measured values of isotropic stress for films thicker than 600 Å were 1.6 x 1010 dyn/cm2. In films less than 600 Å thick the isotropic stress decreased with decreasing thickness. After removal of the films from the substrates, the measured perpendicular anisotropy deviated from the expected geometrical shape anisotropy near pure Ni in both alloys. This indicates that additional significant sources of anisotropy exist at these compositions.

The effect of substrate constraint on the crystalline anisotropy K1 of Ni-Fe epitaxial films has been studied by use of a film removal technique, which involves the evaporation of an epitaxial layer of LiF on MgO, the epitaxial growth of the metallic film on the LiF, and the stripping of the film with water soluble tape. Films ranging in composition from 50% to 100% Ni have been studied. For compositions below 90% Ni the experimental values agree reasonably well with the first order theoretical prediction, ∆K1=[-9/4(C11-C122 100+9/2C44λ2111].

In order to compare the magnetic properties of epitaxial thin films more completely with the properties of bulk single crystals, Ni-Fe films ranging in composition from 60% to 90% Ni, which were evaporated epitaxially on (100) MgO substrates, have been subsequently annealed at 400°C in a vacuum of less than 10-7 Torr to form the ordered Ni3Fe structure near the 75% composition. This ordered structure has been confirmed by electron diffraction.

The saturation magnetization at Ni3Fe increased about 6% with ordering which is in good agreement with previous bulk data. Measurements of the magnetocrystalline anisotropy energy K1 for the epitaxial films show the same large changes with ordering as observed in bulk single crystal samples. In the (001) plane the magnetostriction constants λ100, λ111 are directly related to the induced anisotropy due to a uniform uniaxial strain in the [100] and [110] directions respectively. Assuming that the elastic constants of a film are the same as in bulk material and are unchanged by ordering, the changes in strain sensitivity with ordering for the epitaxial films are found to be in good agreement with values predicted from bulk data. The exchange constant A as measured by ferromagnetic resonance has been measured at the Ni3Fe composition and found to increase 25% with ordering. This seems to indicate a significant increase in the Curie temperature which has only been inferred indirectly for bulk material.