2 resultados para Experimental art

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forced vibration field tests and finite element studies have been conducted on Morrow Point (arch) Dam in order to investigate dynamic dam-water interaction and water compressibility. Design of the data acquisition system incorporates several special features to retrieve both amplitude and phase of the response in a low signal to noise environment. These features contributed to the success of the experimental program which, for the first time, produced field evidence of water compressibility; this effect seems to play a significant role only in the symmetric response of Morrow Point Dam in the frequency range examined. In the accompanying analysis, frequency response curves for measured accelerations and water pressures as well as their resonating shapes are compared to predictions from the current state-of-the-art finite element model for which water compressibility is both included and neglected. Calibration of the numerical model employs the antisymmetric response data since they are only slightly affected by water compressibility, and, after calibration, good agreement to the data is obtained whether or not water compressibility is included. In the effort to reproduce the symmetric response data, on which water compressibility has a significant influence, the calibrated model shows better correlation when water compressibility is included, but the agreement is still inadequate. Similar results occur using data obtained previously by others at a low water level. A successful isolation of the fundamental water resonance from the experimental data shows significantly different features from those of the numerical water model, indicating possible inaccuracy in the assumed geometry and/or boundary conditions for the reservoir. However, the investigation does suggest possible directions in which the numerical model can be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.

Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.