9 resultados para Evolution Inclusions

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

I report the solubility and diffusivity of water in lunar basalt and an iron-free basaltic analogue at 1 atm and 1350 °C. Such parameters are critical for understanding the degassing histories of lunar pyroclastic glasses. Solubility experiments have been conducted over a range of fO2 conditions from three log units below to five log units above the iron-wüstite buffer (IW) and over a range of pH2/pH2O from 0.03 to 24. Quenched experimental glasses were analyzed by Fourier transform infrared spectroscopy (FTIR) and secondary ionization mass spectrometry (SIMS) and were found to contain up to ~420 ppm water. Results demonstrate that, under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <3 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 24; and (5) SIMS analyses of water in iron-rich glasses equilibrated under variable fO2 conditions can be strongly influenced by matrix effects, even when the concentrations of water in the glasses are low. Our results can be used to constrain the entrapment pressure of the lunar melt inclusions of Hauri et al. (2011).

Diffusion experiments were conducted over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to ~10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to ~430 ppm. Water concentration gradients are well described by models in which the diffusivity of water (D*water) is assumed to be constant. The relationship between D*water and water concentration is well described by a modified speciation model (Ni et al. 2012) in which both molecular water and hydroxyl are allowed to diffuse. The success of this modified speciation model for describing our results suggests that we have resolved the diffusivity of hydroxyl in basaltic melt for the first time. Best-fit values of D*water for our experiments on lunar basalt vary within a factor of ~2 over a range of pH2/pH2O from 0.007 to 9.7, a range of fO2 from IW-2.2 to IW+4.9, and a water concentration range from ~80 ppm to ~280 ppm. The relative insensitivity of our best-fit values of D*water to variations in pH2 suggests that H2 diffusion was not significant during degassing of the lunar glasses of Saal et al. (2008). D*water during dehydration and hydration in H2/CO2 gas mixtures are approximately the same, which supports an equilibrium boundary condition for these experiments. However, dehydration experiments into CO2 and CO/CO2 gas mixtures leave some scope for the importance of kinetics during dehydration into H-free environments. The value of D*water chosen by Saal et al. (2008) for modeling the diffusive degassing of the lunar volcanic glasses is within a factor of three of our measured value in our lunar basaltic melt at 1350 °C.

In Chapter 4 of this thesis, I document significant zonation in major, minor, trace, and volatile elements in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions concurrent with diffusive propagation of the boundary layer toward the inclusion center.

Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease towards the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects.

A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C hr-1 from the liquidus down to ~1000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1000 °C is 40 s to just over one hour.

Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization.

All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terpenes represent about half of known natural products, with terpene synthases catalyzing reactions to increase the complexity of substrates and generate cyclizations of the linear diphosphate substrates, therefore forming rings and stereocenters. With their diverse functionality, terpene synthases may be highly evolvable, with the ability to accept a wide range of non-natural compounds and with high product selectivity. Our hypothesis is that directed evolution of terpene synthases can be used to increase selectivity of the synthase on a specific substrate. In the first part of the work presented herein, three natural terpene synthases, Cop2, BcBOT2, and SSCG_02150, were tested for activity against the natural substrate and a non-natural substrate, called Surrogate 1, and the relative activities on both the natural and non-natural substrates were compared. In the second part of this work, a terpene synthase variant of BcBOT2 that has been evolved for thermostability, was used for directed evolution for increased activity and selectivity on the non-natural substrate referred to as Surrogate 2. Mutations for this evolution were introduced using random mutagenesis, with error prone polymerase chain reactions, and using site-specific saturation mutagenesis, in which an NNK library is designed with a specific active site amino acid targeted for mutation. The mutant enzymes were then screened and selected for enhancement of the desired functionality. Two neutral mutants, 19B7 W367F and 19B7 W118Q, were found to maintain activity on Surrogate 2, as measured by the screen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the greatest challenges in science lies in disentangling causality in complex, coupled systems. This is illustrated no better than in the dynamic interplay between the Earth and life. The early evolution and diversification of animals occurred within a backdrop of global change, yet reconstructing the potential role of the environment in this evolutionary transition is challenging. In the 200 million years from the end-Cryogenian to the Ordovician, enigmatic Ediacaran fauna explored body plans, animals diversified and began to biomineralize, forever changing the ocean's chemical cycles, and the biological community in shallow marine ecosystems transitioned from a microbial one to an animal one.

In the following dissertation, a multi-faceted approach combining macro- and micro-scale analyses is presented that draws on the sedimentology, geochemistry and paleontology of the rocks that span this transition to better constrain the potential environmental changes during this interval.

In Chapter 1, the potential of clumped isotope thermometry in deep time is explored by assessing the importance of burial and diagenesis on the thermometer. Eocene- to Precambrian-aged carbonates from the Sultanate of Oman were analyzed from current burial depths of 350-5850 meters. Two end-member styles of diagenesis independent of burial depth were observed.

Chapters 2, 3 and 4 explore the fallibility of the Ediacaran carbon isotope record and aspects of the sedimentology and geochemistry of the rocks preserving the largest negative carbon isotope excursion on record---the Shuram Excursion. Chapter 2 documents the importance of temperature, fluid composition and mineralogy on the delta 18-O min record and interrogates the bulk trace metal signal. Chapter 3 explores the spatial variability in delta 13-C recorded in the transgressive Johnnie Oolite and finds a north-to-south trend recording the onset of the excursion. Chapter 4 investigates the nature of seafloor precipitation during this excursion and more broadly. We document the potential importance of microbial respiratory reactions on the carbonate chemistry of the sediment-water interface through time.

Chapter 5 investigates the latest Precambrian sedimentary record in carbonates from the Sultanate of Oman, including how delta 13-C and delta 34-S CAS vary across depositional and depth gradients. A new model for the correlation of the Buah and Ara formations across Oman is presented. Isotopic results indicate delta 13-C varies with relative eustatic change and delta 34-S CAS may vary in absolute magnitude across Oman.

Chapter 6 investigates the secular rise in delta 18-Omin in the early Paleozoic by using clumped isotope geochemistry on calcitic and phosphatic fossils from the Cambrian and Ordovician. Results do not indicate extreme delta 18-O seawater depletion and instead suggest warmer equatorial temperatures across the early Paleozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary-ion mass spectrometry (SIMS), electron probe analysis (EPMA), analytical scanning electron microscopy (SEM) and infrared (IR) spectroscopy were used to determine the chemical composition and the mineralogy of sub-micrometer inclusions in cubic diamonds and in overgrowths (coats) on octahedral diamonds from Zaire, Botswana, and some unknown localities.

The inclusions are sub-micrometer in size. The typical diameter encountered during transmission electron microscope (TEM) examination was 0.1-0.5 µm. The micro-inclusions are sub-rounded and their shape is crystallographically controlled by the diamond. Normally they are not associated with cracks or dislocations and appear to be well isolated within the diamond matrix. The number density of inclusions is highly variable on any scale and may reach 10^(11) inclusions/cm^3 in the most densely populated zones. The total concentration of metal oxides in the diamonds varies between 20 and 1270 ppm (by weight).

SIMS analysis yields the average composition of about 100 inclusions contained in the sputtered volume. Comparison of analyses of different volumes of an individual diamond show roughly uniform composition (typically ±10% relative). The variation among the average compositions of different diamonds is somewhat greater (typically ±30%). Nevertheless, all diamonds exhibit similar characteristics, being rich in water, carbonate, SiO_2, and K_2O, and depleted in MgO. The composition of micro-inclusions in most diamonds vary within the following ranges: SiO_2, 30-53%; K_2O, 12-30%; CaO, 8-19%; FeO, 6-11%; Al_2O_3, 3-6%; MgO, 2-6%; TiO_2, 2-4%; Na_2O, 1-5%; P_2O_5, 1-4%; and Cl, 1-3%. In addition, BaO, 1-4%; SrO, 0.7-1.5%; La_2O_3, 0.1-0.3%; Ce_2O_3, 0.3-0.5%; smaller amounts of other rare-earth elements (REE), as well as Mn, Th, and U were also detected by instrumental neutron activation analysis (INAA). Mg/(Fe+Mg), 0.40-0.62 is low compared with other mantle derived phases; K/ AI ratios of 2-7 are very high, and the chondrite-normalized Ce/Eu ratios of 10-21 are also high, indicating extremely fractionated REE patterns.

SEM analyses indicate that individual inclusions within a single diamond are roughly of similar composition. The average composition of individual inclusions as measured with the SEM is similar to that measured by SIMS. Compositional variations revealed by the SEM are larger than those detected by SIMS and indicate a small variability in the composition of individual inclusions. No compositions of individual inclusions were determined that might correspond to mono-mineralic inclusions.

IR spectra of inclusion- bearing zones exhibit characteristic absorption due to: (1) pure diamonds, (2) nitrogen and hydrogen in the diamond matrix; and (3) mineral phases in the micro-inclusions. Nitrogen concentrations of 500-1100 ppm, typical of the micro-inclusion-bearing zones, are higher than the average nitrogen content of diamonds. Only type IaA centers were detected by IR. A yellow coloration may indicate small concentration of type IB centers.

The absorption due to the micro-inclusions in all diamonds produces similar spectra and indicates the presence of hydrated sheet silicates (most likely, Fe-rich clay minerals), carbonates (most likely calcite), and apatite. Small quantities of molecular CO_2 are also present in most diamonds. Water is probably associated with the silicates but the possibility of its presence as a fluid phase cannot be excluded. Characteristic lines of olivine, pyroxene and garnet were not detected and these phases cannot be significant components of the inclusions. Preliminary quantification of the IR data suggests that water and carbonate account for, on average, 20-40 wt% of the micro-inclusions.

The composition and mineralogy of the micro-inclusions are completely different from those of the more common, larger inclusions of the peridotitic or eclogitic assemblages. Their bulk composition resembles that of potassic magmas, such as kimberlites and lamproites, but is enriched in H_2O, CO_3, K_2O, and incompatible elements, and depleted in MgO.

It is suggested that the composition of the micro-inclusions represents a volatile-rich fluid or a melt trapped by the diamond during its growth. The high content of K, Na, P, and incompatible elements suggests that the trapped material found in the micro-inclusions may represent an effective metasomatizing agent. It may also be possible that fluids of similar composition are responsible for the extreme enrichment of incompatible elements documented in garnet and pyroxene inclusions in diamonds.

The origin of the fluid trapped in the micro-inclusions is still uncertain. It may have been formed by incipient melting of a highly metasomatized mantle rocks. More likely, it is the result of fractional crystallization of a potassic parental magma at depth. In either case, the micro-inclusions document the presence of highly potassic fluids or melts at depths corresponding to the diamond stability field in the upper mantle. The phases presently identified in the inclusions are believed to be the result of closed system reactions at lower pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.

In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.

Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.

In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.

Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.

Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.

Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.

Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing—which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them—including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these terraces from terraces formed by externally forced pulses of vertical incision. In a separate study, Chapter 5 utilizes image and topographic data from the Mars Reconnaissance Orbiter to quantitatively identify spatial structures in the polar layered deposits of Mars, and identifies sequences of beds, consistently 1-2 meters thick, that have accumulated hundreds of kilometers apart in the north polar layered deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygenic photosynthesis fundamentally transformed our planet by releasing molecular oxygen and altering major biogeochemical cycles, and this exceptional metabolism relies on a redox-active cubane cluster of four manganese atoms. Not only is manganese essential for producing oxygen, but manganese is also only oxidized by oxygen and oxygen-derived species. Thus the history of manganese oxidation provides a valuable perspective on our planet’s environmental past, the ancient availability of oxygen, and the evolution of oxygenic photosynthesis. Broadly, the general trends of the geologic record of manganese deposition is a chronicle of ancient manganese oxidation: manganese is introduced into the fluid Earth as Mn(II) and it will remain only a trace component in sedimentary rocks until it is oxidized, forming Mn(III,IV) insoluble precipitates that are concentrated in the rock record. Because these manganese oxides are highly favorable electron acceptors, they often undergo reduction in sediments through anaerobic respiration and abiotic reaction pathways.

The following dissertation presents five chapters investigating manganese cycling both by examining ancient examples of manganese enrichments in the geologic record and exploring the mineralogical products of various pathways of manganese oxide reduction that may occur in sediments. The first chapter explores the mineralogical record of manganese and reports abundant manganese reduction recorded in six representative manganese-enriched sedimentary sequences. This is followed by a second chapter that further analyzes the earliest significant manganese deposit 2.4 billon years ago, and determines that it predated the origin of oxygenic photosynthesis and thus is supporting evidence for manganese-oxidizing photosynthesis as an evolutionary precursor prior to oxygenic photosynthesis. The lack of oxygen during this early manganese deposition was partially established using oxygen-sensitive detrital grains, and so a third chapter delves into what these grains mean for oxygen constraints using a mathematical model. The fourth chapter returns to processes affecting manganese post-deposition, and explores the relationships between manganese mineral products and (bio)geochemical reduction processes to understand how various manganese minerals can reveal ancient environmental conditions and biological metabolisms. Finally, a fifth chapter considers whether manganese can be mobilized and enriched in sedimentary rocks and determines that manganese was concentrated secondarily in a 2.5 billion-year-old example from South Africa. Overall, this thesis demonstrates how microbial processes, namely photosynthesis and metal oxide-reducing metabolisms, are linked to and recorded in the rich complexity of the manganese mineralogical record.