2 resultados para Evaluations
em CaltechTHESIS
Resumo:
The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.
First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.
Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.
Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.
Resumo:
The Everett interpretation of quantum mechanics is an increasingly popular alternative to the traditional Copenhagen interpretation, but there are a few major issues that prevent the widespread adoption. One of these issues is the origin of probabilities in the Everett interpretation, which this thesis will attempt to survey. The most successful resolution of the probability problem thus far is the decision-theoretic program, which attempts to frame probabilities as outcomes of rational decision making. This marks a departure from orthodox interpretations of probabilities in the physical sciences, where probabilities are thought to be objective, stemming from symmetry considerations. This thesis will attempt to offer evaluations on the decision-theoretic program.