7 resultados para Eugene
em CaltechTHESIS
Resumo:
The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.
Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.
Resumo:
Alternative scaffolds are non-antibody proteins that can be engineered to bind new targets. They have found useful niches in the therapeutic space due to their smaller size and the ease with which they can be engineered to be bispecific. We sought a new scaffold that could be used for therapeutic ends and chose the C2 discoidin domain of factor VIII, which is well studied and of human origin. Using yeast surface display, we engineered the C2 domain to bind to αvβ3 integrin with a 16 nM affinity while retaining its thermal stability and monomeric nature. We obtained a crystal structure of the engineered domain at 2.1 Å resolution. We have christened this discoidin domain alternative scaffold the “discobody.”
Resumo:
A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.
In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.
A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.
For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.
Resumo:
1. The effect of 2,2’-bis-[α-(trimethylammonium)methyl]azobenzene (2BQ), a photoisomerizable competitive antagonist, was studied at the nicotinic acetycholine receptor of Electrophorus electroplaques using voltage-jump and light-flash techniques.
2. 2BQ, at concentrations below 3 μΜ, reduced the amplitude of voltage-jump relaxations but had little effect on the voltage-jump relaxation time constants under all experimental conditions. At higher concentrations and voltages more negative than -150 mV, 2BQ caused significant open channel blockade.
3. Dose-ratio studies showed that the cis and trans isomers of 2BQ have equilibrium binding constants (K ᵢ) of .33 and 1.0 μΜ, respectively. The binding constants determined for both isomers are independent of temperature, voltage, agonist concentration, and the nature of the agonist.
4. In a solution of predominantly cis-2BQ, visible-light flashes led to a net cis→trans isomerization and caused an increase in the agonist-induced current. This increase had at least two exponential components; the larger amplitude component had the same time constant as a subsequent voltage-jump relaxation; the smaller amplitude component was investigated using ultraviolet light flashes.
5. In a solution of predominantly trans-2BQ, UV-light flashes led to a net trans→cis isomerization and caused a net decrease in the agonist-induced current. This effect had at least two exponential components. The smaller and faster component was an increase in agonist-induced current and had a similar time constant to the voltage-jump relaxation. The larger component was a slow decrease in the agonist-induced current with rate constant approximately an order of magnitude less than that of the voltage-jump relaxation. This slow component provided a measure of the rate constant for dissociation of cis-2BQ (k_ = 60/s at 20°C). Simple modelling of the slope of the dose-rate curves yields an association rate constant of 1.6 x 108/M/s. This agrees with the association rate constant of 1.8 x 108/M/s estimated from the binding constant (Ki). The Q10 of the dissociation rate constant of cis-2BQ was 3.3 between 6° and 20°C. The rate constants for association and dissociation of cis-28Q at receptors are independent of voltage, agonist concentration, and the nature of the agonist.
6. We have measured the molecular rate constants of a competitive antagonist which has roughly the same K ᵢ as d-tubocurarine but interacts more slowly with the receptor. This leads to the conclusion that curare itself has an association rate constant of 4 x 109/M/s or roughly as fast as possible for an encounter-limited reaction.
Resumo:
The Humphreys Quadrangle is a portion of the easternmost Ventura Basin underlain by a thick series of Tertiary sedimentary rocks. On these rocks a great variety of geomorphic forms have been molded by the processes of running water typical of a semi-arid climate and by several types of mass movement. Among the different categories of mass movement present, a new type, the siltflow, was observed.
The geomorphic forms of special interest present in the quadrangle are rock cones, open canyonheads, asymmetric canyons, and stream terraces and straths. The author urges the adoption of the definition of strath as that part of an old dissected valley floor, including the floors of tributary valleys, which was not part of the floodplain of the main valley stream.
An old erosion surface, the Puckett Mesa Surface, is present in the Humphreys Quadrangle which is correlative with certain of the older stream terraces. By correlating the variation of gradient and of fill of the stream terraces with post –Wisconsin climatic fluctuations the age of the Puckett Mesa Surface is set at approximately 6000 B.C. This correlation sets the probable age of the older Rancho La Brea deposits at 6000 to 8000 B. C. and the probable age of the Carpenteria brea deposits at 1000 to 1 B. C.
Resumo:
The region treated in the following report is a small area of about one square mile near Pacoima, California. It consists of a group of small hills that that form the western abutment of the Hansen Dam. It is underlain by a section of intrusives, sediments, and extrusives, which may be subdivided into four groups.
The oldest rocks form the Dimebere complex of Jurassic (?) plutonic rocks, pegmatites, and schists. Lying uncomformably on this is a series of alternating terrestrial sandstones and bassalts of Tertiary age. These are unconformably overlain in turn by the Hansen Dam formation, a series of marine shales and sandstone correlated with the Temblor by the fossil contact. Finally into these strata was intruded the Munglish andesite.
These strata form a shallow, plunging anticline, whose axis trends slightly east of north and lies in the center of the hills. The unconformities have been offset in several places by a series of faults apparently related to the anticline.
A complete outline of the geologic history is included in the report.
Resumo:
Two general, numerically exact, quantum mechanical methods have been developed for the calculation of energy transfer in molecular collisions. The methods do not treat electronic transitions because of the exchange symmetry of the electrons. All interactions between the atoms in the system are written as potential energies.
The first method is a matrix generalization of the invariant imbedding procedure, 17, 20 adapted for multi-channel collision processes. The second method is based on a direct integration of the matrix Schrödinger equation, with a re-orthogonalization transform applied during the integration.
Both methods have been applied to a collinear collision model for two diatoms, interacting via a repulsive exponential potential. Two major studies were performed. The first was to determine the energy dependence of the transition probabilities for an H2 on the H2 model system. Transitions are possible between translational energy and vibrational energy, and from vibrational modes of one H2 to the other H2. The second study was to determine the variation of vibrational energy transfer probability with differences in natural frequency of two diatoms similar to N2.
Comparisons were made to previous approximate analytical solutions of this same problem. For translational to vibrational energy transfer, the previous approximations were not adequate. For vibrational to vibrational energy transfer of one vibrational quantum, the approximations were quite good.