9 resultados para Error Correction
em CaltechTHESIS
Resumo:
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security.
At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level.
In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations.
In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction.
In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.
Resumo:
This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.
In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.
This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.
Resumo:
Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we
•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;
•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;
•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;
•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;
•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.
The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we
•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;
•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.
The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.
Resumo:
This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.
Resumo:
In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.
In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.
In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.
Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.
In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.
In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.
In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.
Resumo:
Experimental Joule-Thomson measurements were made on gaseous propane at temperatures from 100 to 280˚F and at pressures from 8 to 66 psia. Joule-Thomson measurements were also made on gaseous n-butane at temperatures from 100 to 280˚ and at pressures from 8 to 42 psia. For propane, the values of these measurements ranged from 0.07986˚F/psi at 280˚F and 8.01 psia to 0.19685˚F/psi at 100˚F and 66.15 psia. For n-butane, the values ranged from 0.11031˚F/psi at 280˚F and 9.36 psia to 0.30141˚F/psi at 100˚F and 41.02 psia. The experimental values have a maximum error of 1.5 percent.
For n-butane, the measurements of this study did not agree with previous Joule-Thomson measurements made in the Laboratory in 1935. The application of a thermal-transfer correction to the previous experimental measurements would cause the two sets of data to agree. Calculated values of the Joule-Thomson coefficient from other types of p-v-t data did agree with the present measurements for n-butane.
The apparatus used to measure the experimental Joule-Thomson coefficients had a radial-flow porous thimble and was operated at pressure changes between 2.3 and 8.6 psi. The major difference between this and other Joule-Thomson apparatus was its larger weight rates of flow (up to 6 pounds per hour) at atmospheric pressure. The flow rate was shown to have an appreciable effect on non-isenthalpic Joule-Thomson measurements.
Photographic materials on pages 79-81 are essential and will not reproduced clearly on Xerox copies. Photographic copies should be ordered.
Resumo:
The problem motivating this investigation is that of pure axisymmetric torsion of an elastic shell of revolution. The analysis is carried out within the framework of the three-dimensional linear theory of elastic equilibrium for homogeneous, isotropic solids. The objective is the rigorous estimation of errors involved in the use of approximations based on thin shell theory.
The underlying boundary value problem is one of Neumann type for a second order elliptic operator. A systematic procedure for constructing pointwise estimates for the solution and its first derivatives is given for a general class of second-order elliptic boundary-value problems which includes the torsion problem as a special case.
The method used here rests on the construction of “energy inequalities” and on the subsequent deduction of pointwise estimates from the energy inequalities. This method removes certain drawbacks characteristic of pointwise estimates derived in some investigations of related areas.
Special interest is directed towards thin shells of constant thickness. The method enables us to estimate the error involved in a stress analysis in which the exact solution is replaced by an approximate one, and thus provides us with a means of assessing the quality of approximate solutions for axisymmetric torsion of thin shells.
Finally, the results of the present study are applied to the stress analysis of a circular cylindrical shell, and the quality of stress estimates derived here and those from a previous related publication are discussed.
Resumo:
A study of human eye movements was made in order to elucidate the nature of the control mechanism in the binocular oculomotor system.
We first examined spontaneous eye movements during monocular and binocular fixation in order to determine the corrective roles of flicks and drifts. It was found that both types of motion correct fixational errors, although flicks are somewhat more active in this respect. Vergence error is a stimulus for correction by drifts but not by flicks, while binocular vertical discrepancy of the visual axes does not trigger corrective movements.
Second, we investigated the non-linearities of the oculomotor system by examining the eye movement responses to point targets moving in two dimensions in a subjectively unpredictable manner. Such motions consisted of hand-limited Gaussian random motion and also of the sum of several non-integrally related sinusoids. We found that there is no direct relationship between the phase and the gain of the oculomotor system. Delay of eye movements relative to target motion is determined by the necessity of generating a minimum afferent (input) signal at the retina in order to trigger corrective eye movements. The amplitude of the response is a function of the biological constraints of the efferent (output) portion of the system: for target motions of narrow bandwidth, the system responds preferentially to the highest frequency; for large bandwidth motions, the system distributes the available energy equally over all frequencies. Third, the power spectra of spontaneous eye movements were compared with the spectra of tracking eye movements for Gaussian random target motions of varying bandwidths. It was found that there is essentially no difference among the various curves. The oculomotor system tracks a target, not by increasing the mean rate of impulses along the motoneurons of the extra-ocular muscles, but rather by coordinating those spontaneous impulses which propagate along the motoneurons during stationary fixation. Thus, the system operates at full output at all times.
Fourth, we examined the relative magnitude and phase of motions of the left and the right visual axes during monocular and binocular viewing. We found that the two visual axes move vertically in perfect synchronization at all frequencies for any viewing condition. This is not true for horizontal motions: the amount of vergence noise is highest for stationary fixation and diminishes for tracking tasks as the bandwidth of the target motion increases. Furthermore, movements of the occluded eye are larger than those of the seeing eye in monocular viewing. This effect is more pronounced for horizontal motions, for stationary fixation, and for lower frequencies.
Finally, we have related our findings to previously known facts about the pertinent nerve pathways in order to postulate a model for the neurological binocular control of the visual axes.