2 resultados para Enzymatic hydrolysis
em CaltechTHESIS
Resumo:
A study has been made of the reaction mechanism of a model system for enzymatic hydroxylation. The results of a kinetic study of the hydroxylation of 2-hydroxyazobenzene derivatives by cupric ion and hydrogen peroxide are presented. An investigation of kinetic orders indicates that hydroxylation proceeds by way of a coordinated intermediate complex consisting of cupric ion and the mono anions of 2-hydroxyazobenzene and hydrogen peroxide. Studies with deuterated substrate showed the absence of a primary kinetic isotope effect and no evidence of an NIH shift. The effect of substituents on the formation of intermediate complexes and the overall rate of hydroxylation was studied quantitatively in aqueous solution. The combined results indicate that the hydroxylation step is only slightly influenced by ring substitution. The substituent effect is interpreted in terms of reaction by a radical path or a concerted mechanism in which the formation of ionic intermediates is avoided. The reaction mechanism is discussed as a model for enzymatic hydroxylation.
Resumo:
This dissertation describes studies on two multinucleating ligand architectures: the first scaffold was designed to support tricopper complexes, while the second platform was developed to support tri- and tetrametallic clusters.
In Chapter 2, the synthesis of yttrium (and lanthanide) complexes supported by a tripodal ligand framework designed to bind three copper centers in close proximity is described. Tricopper complexes were shown to react with dioxygen in a 1:1 [Cu3]/O2 stoichiometry to form intermediates in which the O–O bond was fully cleaved, as characterized via UV-Vis spectroscopy and determination of the reaction stoichiometry. Pre-arrangement of the three Cu centers was pivotal to cooperative O2 activation, as mono-copper complexes reacted differently with dioxgyen. The reactivity of the observed intermediates was studied with various substrates (reductants, O-atom acceptors, H-atom donors, Brønsted acids) to determine their properties. In Chapter 3, the reactivity of the same yttrium-tricopper complex with nitric oxide was explored. Reductive coupling to form a trans-hyponitrite complex (characterized by X-ray crystallography) was observed via cooperative reactivity by an yttrium and a copper center on two distinct tetrametallic units. The hyponitrite complex was observed to release nitrous oxide upon treatment with a Brønsted acid, supporting its viability as an intermediate in nitric oxide reduction to nitrous oxide.
In Chapter 4, a different multinucleating ligand scaffold was employed to synthesize heterometallic triiron clusters containing one oxide and one hydroxide bridges. The effects of the redox-inactive, Lewis acidic heterometals on redox potential was studied by cyclic voltammetry, unveiling a linear correlation between redox potential and heterometal Lewis acidity. Further studies on these complexes showed that the Lewis acidity of the redox-inactive metals also affected the oxygen-atom transfer reactivity of these clusters. Comparisons of this reactivity with manganese systems, collaborative efforts to reassign the structures of related manganese oxo-hydroxo clusters, and synthetic attempts to access related dioxo clusters are also described.
In Appendix A, ongoing efforts to synthesize new clusters supported by the same multinucleating ligand platform are described. Studies of novel approaches towards ligand exchange in tetrametallic clusters and incorporation of new supporting and bridging ligand motifs in trinuclear complexes are presented.