5 resultados para Energy simulation

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic rupture simulations are unique in their contributions to the study of earthquake physics. The current rapid development of dynamic rupture simulations poses several new questions: Do the simulations reflect the real world? Do the simulations have predictive power? Which one should we believe when the simulations disagree? This thesis illustrates how integration with observations can help address these questions and reduce the effects of non-uniqueness of both dynamic rupture simulations and kinematic inversion problems. Dynamic rupture simulations with observational constraints can effectively identify non-physical features inferred from observations. Moreover, the integrative technique can also provide more physical insights into the mechanisms of earthquakes. This thesis demonstrates two examples of such kinds of integration: dynamic rupture simulations of the Mw 9.0 2011 Tohoku-Oki earthquake and of earthquake ruptures in damaged fault zones:

(1) We develop simulations of the Tohoku-Oki earthquake based on a variety of observations and minimum assumptions of model parameters. The simulations provide realistic estimations of stress drop and fracture energy of the region and explain the physical mechanisms of high-frequency radiation in the deep region. We also find that the overridding subduction wedge contributes significantly to the up-dip rupture propagation and large final slip in the shallow region. Such findings are also applicable to other megathrust earthquakes.

(2) Damaged fault zones are usually found around natural faults, but their effects on earthquake ruptures have been largely unknown. We simulate earthquake ruptures in damaged fault zones with material properties constrained by seismic and geological observations. We show that reflected waves in fault zones are effective at generating pulse-like ruptures and head waves tend to accelerate and decelerate rupture speeds. These mechanisms are robust in natural fault zones with large attenuation and off-fault plasticity. Moreover, earthquakes in damaged fault zones can propagate at super-Rayleigh speeds that are unstable in homogeneous media. Supershear transitions in fault zones do not require large fault stresses. In the end, we present observations in the Big Bear region, where variability of rupture speeds of small earthquakes correlates with the laterally variable materials in a damaged fault zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high computational cost of correlated wavefunction theory (WFT) calculations has motivated the development of numerous methods to partition the description of large chemical systems into smaller subsystem calculations. For example, WFT-in-DFT embedding methods facilitate the partitioning of a system into two subsystems: a subsystem A that is treated using an accurate WFT method, and a subsystem B that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT) method. Representation of the interactions between subsystems is non-trivial, and often requires the use of approximate kinetic energy functionals or computationally challenging optimized effective potential calculations; however, it has recently been shown that these challenges can be eliminated through the use of a projection operator. This dissertation describes the development and application of embedding methods that enable accurate and efficient calculation of the properties of large chemical systems.

Chapter 1 introduces a method for efficiently performing projection-based WFT-in-DFT embedding calculations on large systems. This is accomplished by using a truncated basis set representation of the subsystem A wavefunction. We show that naive truncation of the basis set associated with subsystem A can lead to large numerical artifacts, and present an approach for systematically controlling these artifacts.

Chapter 2 describes the application of the projection-based embedding method to investigate the oxidative stability of lithium-ion batteries. We study the oxidation potentials of mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC) by using the projection-based embedding method to calculate the vertical ionization energy (IE) of individual molecules at the CCSD(T) level of theory, while explicitly accounting for the solvent using DFT. Interestingly, we reveal that large contributions to the solvation properties of DMC originate from quadrupolar interactions, resulting in a much larger solvent reorganization energy than that predicted using simple dielectric continuum models. Demonstration that the solvation properties of EC and DMC are governed by fundamentally different intermolecular interactions provides insight into key aspects of lithium-ion batteries, with relevance to electrolyte decomposition processes, solid-electrolyte interphase formation, and the local solvation environment of lithium cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis outlines the construction of several types of structured integrators for incompressible fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the existing Lagrangian-based fluid integrator. We next present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped domains with sub-grid accuracy.

Both these numerical methods involve approximating the Lie group of volume-preserving diffeomorphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle by means of a non-holonomic constraint. Advantages and limitations of this discretization method will be outlined. It will be seen that these derivation techniques are unable to yield symplectic integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin's circulation theorem.

Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful element in producing structured numerical methods for fluids in the future.