13 resultados para Energetic optimization
em CaltechTHESIS
Resumo:
This thesis discusses various methods for learning and optimization in adaptive systems. Overall, it emphasizes the relationship between optimization, learning, and adaptive systems; and it illustrates the influence of underlying hardware upon the construction of efficient algorithms for learning and optimization. Chapter 1 provides a summary and an overview.
Chapter 2 discusses a method for using feed-forward neural networks to filter the noise out of noise-corrupted signals. The networks use back-propagation learning, but they use it in a way that qualifies as unsupervised learning. The networks adapt based only on the raw input data-there are no external teachers providing information on correct operation during training. The chapter contains an analysis of the learning and develops a simple expression that, based only on the geometry of the network, predicts performance.
Chapter 3 explains a simple model of the piriform cortex, an area in the brain involved in the processing of olfactory information. The model was used to explore the possible effect of acetylcholine on learning and on odor classification. According to the model, the piriform cortex can classify odors better when acetylcholine is present during learning but not present during recall. This is interesting since it suggests that learning and recall might be separate neurochemical modes (corresponding to whether or not acetylcholine is present). When acetylcholine is turned off at all times, even during learning, the model exhibits behavior somewhat similar to Alzheimer's disease, a disease associated with the degeneration of cells that distribute acetylcholine.
Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems implemented entirely in analog hardware. The algorithms inject noise into the systems and correlate the noise with the outputs of the systems. This allows them to estimate gradients and to implement noisy versions of gradient descent, without having to calculate gradients explicitly. The methods require only noise generators, adders, multipliers, integrators, and differentiators; and the number of devices needed scales linearly with the number of adjustable parameters in the adaptive systems. With the exception of one global signal, the algorithms require only local information exchange.
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
Resumo:
The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.
Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.
The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.
Resumo:
Many engineering applications face the problem of bounding the expected value of a quantity of interest (performance, risk, cost, etc.) that depends on stochastic uncertainties whose probability distribution is not known exactly. Optimal uncertainty quantification (OUQ) is a framework that aims at obtaining the best bound in these situations by explicitly incorporating available information about the distribution. Unfortunately, this often leads to non-convex optimization problems that are numerically expensive to solve.
This thesis emphasizes on efficient numerical algorithms for OUQ problems. It begins by investigating several classes of OUQ problems that can be reformulated as convex optimization problems. Conditions on the objective function and information constraints under which a convex formulation exists are presented. Since the size of the optimization problem can become quite large, solutions for scaling up are also discussed. Finally, the capability of analyzing a practical system through such convex formulations is demonstrated by a numerical example of energy storage placement in power grids.
When an equivalent convex formulation is unavailable, it is possible to find a convex problem that provides a meaningful bound for the original problem, also known as a convex relaxation. As an example, the thesis investigates the setting used in Hoeffding's inequality. The naive formulation requires solving a collection of non-convex polynomial optimization problems whose number grows doubly exponentially. After structures such as symmetry are exploited, it is shown that both the number and the size of the polynomial optimization problems can be reduced significantly. Each polynomial optimization problem is then bounded by its convex relaxation using sums-of-squares. These bounds are found to be tight in all the numerical examples tested in the thesis and are significantly better than Hoeffding's bounds.
Resumo:
The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 ≤ Z ≤ 28) and energy spectra (5 to 15 MeV /nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements.
The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 ≤ Z ≤ 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events.
The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: The elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events.
The four-flare average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggests that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.
Resumo:
Observations of solar energetic particles (SEPs) from 22 solar flares in the 1977-1982 time period are reported. The observations were made by the Cosmic Ray Subsystem on board the Voyager 1 and 2 spacecraft. SEP abundances have been obtained for all elements with 3 ≤ Z ≤ 30 except Li, Be, B. F, Sc, V, Co and Cu. for which upper limits have been obtained. Statistically meaningful abundances of several rare elements (e.g., P, Cl, K, Ti, Mn) have been determined for the first time, and the average abundances of the more abundant elements have been determined with improved precision, typically a factor of three better than the best previous determinations.
Previously reported results concerning the dependence of the fractionation of SEPs relative to photosphere on first ionization potential (FIP) have been confirmed and amplified upon with the new data. The monotonic Z-dependence of the variation between flares noted by earlier studies was found to be interpretable as a fractionation, produced by acceleration of the particles from the corona and their propagation through interplanetary space, which is ordered by the ionic charge-to-mass ratio Q/ M of the species making up the SEPs. It was found that Q/M is the primary organizing parameter of acceleration and propagation effects in SEPs, as evidenced by the dependence on Q/M of time, spatial and energy dependence within flares and of the abundance variability from flare to flare.
An unfractionated coronal composition was derived by applying a simple Q/M fractionation correction to the observed average SEP composition, to simultaneously correct for all Q/M-correlated acceleration/propagation fractionation of SEPs. The resulting coronal composition agrees well with current XUV/X-ray spectroscopic measurements of coronal composition but is of much higher precision and is available for a much larger set of elements. Compared to spectroscopic photospheric abundances, the SEP-derived corona appears depleted in C and somewhat enriched in Cr (and possibly Ca and Ti).
An unfractionated photospheric composition was derived by applying a simple FIP fractionation correction to the derived coronal composition, to correct for the FIP-associated fractionation of the corona during its formation from photospheric material. The resulting composition agrees well with the photospheric abundance tabulation of Grevesse (1984) except for an at least 50% lower abundance of C and a significantly greater abundance of Cr and possibly Ti. The results support the Grevesse photospheric Fe abundance, about 50% higher than meteoritic and earlier solar values. The SEP-derived photospheric composition is not generally of higher precision than the available spectroscopic data, but it relies on fewer physical parameters and is available for some elements (C, N, Ne, Ar) which cannot be measured spectroscopically in the photosphere.
Resumo:
We report measurements of isotope abundance ratios for 5-50 MeV/nuc nuclei from a large solar flare that occurred on September 23, 1978. The measurements were made by the Heavy Isotope Spectrometer Telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun libration point approximately one million miles sunward of the Earth. We report finite values for the isotope abundance ratios 13C/12C, 15N/14N, 18O/16O, 22Ne/ 20Ne, 25Mg/24Mg, and 26Mg/24Mg, and upper limits for the isotope abundance ratios 3He/4He, 14C/12C, 17O/16O, and 21Ne/20Ne.
We measured element abundances and spectra to compare the September 23, 1978 flare with other flares reported in the literature. The flare is a typical large flare with "low" Fe/O abundance (≤ 0.1).
For 13C/12C, 15N/14N, 18O/16O, 25Mg/ 24Mg, and 26Mg/24Mg, our measured isotope abundance ratios agree with the solar system abundance ratios of Cameron (1981). For neon we measure 22Ne/20Ne = 0.109 + 0.026 - 0.019, a value that is different with confidence 97.5% from the abundance measured in the solar wind by Geiss at al. (1972) of 22Ne/20Ne = 0.073 ± 0.001. Our measurement for 22Ne/20Ne agrees with the isotopic composition of the meteoritic component neon-A.
Separate arguments appear to rule out simple mass fractionation in the solar wind and in our solar energetic particle measurements as the cause of the discrepancy in the comparison of the apparent compositions of these two sources of solar material.
Resumo:
Understanding the roles of microorganisms in environmental settings by linking phylogenetic identity to metabolic function is a key challenge in delineating their broad-scale impact and functional diversity throughout the biosphere. This work addresses and extends such questions in the context of marine methane seeps, which represent globally relevant conduits for an important greenhouse gas. Through the application and development of a range of culture-independent tools, novel habitats for methanotrophic microbial communities were identified, established settings were characterized in new ways, and potential past conditions amenable to methane-based metabolism were proposed. Biomass abundance and metabolic activity measures – both catabolic and anabolic – demonstrated that authigenic carbonates associated with seep environments retain methanotrophic activity, not only within high-flow seep settings but also in adjacent locations exhibiting no visual evidence of chemosynthetic communities. Across this newly extended habitat, microbial diversity surveys revealed archaeal assemblages that were shaped primarily by seepage activity level and bacterial assemblages influenced more substantially by physical substrate type. In order to reliably measure methane consumption rates in these and other methanotrophic settings, a novel method was developed that traces deuterium atoms from the methane substrate into aqueous medium and uses empirically established scaling factors linked to radiotracer rate techniques to arrive at absolute methane consumption values. Stable isotope probing metaproteomic investigations exposed an array of functional diversity both within and beyond methane oxidation- and sulfate reduction-linked metabolisms, identifying components of each proposed enzyme in both pathways. A core set of commonly occurring unannotated protein products was identified as promising targets for future biochemical investigation. Physicochemical and energetic principles governing anaerobic methane oxidation were incorporated into a reaction transport model that was applied to putative settings on ancient Mars. Many conditions enabled exergonic model reactions, marking the metabolism and its attendant biomarkers as potentially promising targets for future astrobiological investigations. This set of inter-related investigations targeting methane metabolism extends the known and potential habitat of methanotrophic microbial communities and provides a more detailed understanding of their activity and functional diversity.
Resumo:
This dissertation reformulates and streamlines the core tools of robustness analysis for linear time invariant systems using now-standard methods in convex optimization. In particular, robust performance analysis can be formulated as a primal convex optimization in the form of a semidefinite program using a semidefinite representation of a set of Gramians. The same approach with semidefinite programming duality is applied to develop a linear matrix inequality test for well-connectedness analysis, and many existing results such as the Kalman-Yakubovich--Popov lemma and various scaled small gain tests are derived in an elegant fashion. More importantly, unlike the classical approach, a decision variable in this novel optimization framework contains all inner products of signals in a system, and an algorithm for constructing an input and state pair of a system corresponding to the optimal solution of robustness optimization is presented based on this information. This insight may open up new research directions, and as one such example, this dissertation proposes a semidefinite programming relaxation of a cardinality constrained variant of the H ∞ norm, which we term sparse H ∞ analysis, where an adversarial disturbance can use only a limited number of channels. Finally, sparse H ∞ analysis is applied to the linearized swing dynamics in order to detect potential vulnerable spots in power networks.
Resumo:
Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.
Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.
The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.
Resumo:
The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.
The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡiejϴ + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.
For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.
Resumo:
This thesis presents a topology optimization methodology for the systematic design of optimal multifunctional silicon anode structures in lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such, this work considers two design objectives of minimum compliance under design dependent volume expansion, and maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the iteration history, mesh independence, and influence of prescribed volume fraction and minimum length scale are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the compliance and conduction design criteria. A weighting method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. Furthermore, a systematic parameter study is undertaken to determine the influence of the prescribed volume fraction and minimum length scale on the optimal combined topologies. The developments presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.