2 resultados para Ellberbe, L. W.

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I present a study of W pair production in e+e- annihilation using fully hadronic W<sup>+W<sup>- events. Data collected by the L3 detector at LEP in 1996-1998, at collision center-of-mass energies between 161 and 189 GeV, was used in my analysis.

Analysis of the total and differential W<sup>+W<sup>- cross sections with the resulting sample of 1,932 W<sup>+W<sup>- → qqqq event candidates allowed me to make precision measurements of a number of properties of the W boson. I combined my measurements with those using other W<sup>+W<sup>- final states to obtain stringent constraints on the W boson's couplings to fermions, other gauge bosons, and scalar Higgs field by measuring the total e+e-W<sup>+W<sup>- cross section and its energy dependence

σ(e+e-W<sup>+W<sup>-) =

{2.68+0.98-0.67(stat.)± 0.14(syst.) pb, √s = 161.34 GeV

{12.04+1.38-1.29(stat.)± 0.23(syst.) pb, √s = 172.13 GeV

{16.45 ± 0.67(stat.) ± 0.26(syst.) pb, √s = 182.68 GeV

{16.28 ± 0.38(stat.) ± 0.26(syst.) pb, √s = 188.64 GeV

the fraction of W bosons decaying into hadrons

BR(W →qq') = 68.72 ± 0.69(stat.) ± 0.38(syst.) %,

invisible non-SM width of the W boson

ΓinvisibleW</sub> less than MeV at 95% C.L.,

the mass of the W boson

MW</sub> = 80.44 ± 0.08(stat.)± 0.06(syst.) GeV,

the total width of the W boson

ΓW</sub> = 2.18 ± 0.20(stat.)± 0.11(syst.) GeV,

the anomalous triple gauge boson couplings of the W</p>

ΔgZ1 = 0.16+0.13-0.20(stat.) ± 0.11(syst.)

Δkγ = 0.26+0.24-0.33(stat.) ± 0.16(syst.)

λγ = 0.18+0.13-0.20(stat.) ± 0.11(syst.)

No significant deviations from Standard Model predictions were found in any of the measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic Kαl x-ray isotope shifts have been measured for Sn 116-124, Sm 148-154, W 182-184, W 184-186, and W 182-186 using a curved crystal Cauchois spectrometer. The analysis of the measurements has included the electrostatic volume effect, screening by the transition electron as well as the non-transition electrons, normal and specific mass shifts, dynamical nuclear qudrupole polarization, and a radiative correction effect of the electron magnetic moment in the nuclear charge radii are obtained. Where other experimental data are available, the agreement with the present measurements is satisfactory. Comparisons with several nuclear model predictions yield only partial agreement.