3 resultados para ENVIRONMENTAL CONTROLS

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbes have profoundly influenced the Earth’s environments through time. Records of these interactions come primarily from the development and implementation of proxies that relate known modern processes to chemical signatures in the sedimentary record. This thesis is presented in two parts, focusing first on novel proxy development in the modern and second on interpretation of past environments using well-established methods. Part 1, presented in two chapters, builds on previous observations that different microbial metabolisms produce vastly different lipid hydrogen isotopic compositions. Chapter 1 evaluates the potential environmental expression of metabolism-based fractionation differences by exploiting the natural microbial community gradients in hydrothermal springs. We find a very large range in isotopic composition that can be demonstrably linked to the microbial source(s) of the fatty acids at each sample site. In Chapter 2, anaerobic culturing techniques are used to evaluate the hydrogen isotopic fractionations produced by anaerobic microbial metabolisms. Although the observed fractionation patterns are similar to those reported for aerobic cultures for some organisms, others show large differences. Part 2 changes focus from the modern to the ancient and uses classical stratigraphic methods combined with isotope stratigraphy to interpret microbial and environmental changes during the latest Precambrian Era. Chapter 3 presents a detailed characterization of the facies, parasequence development, and stratigraphic architecture of the Ediacaran Khufai Formation. Chapter 4 presents measurements of carbon, oxygen, and sulfur isotopic ratios in stratigraphic context. Large oscillations in the isotopic composition of sulfate constrain the size of the marine sulfate reservoir and suggest incorporation of an enriched isotopic source. Because this data was measured in stratigraphic context, we can assert with confidence that these isotopic shifts are not related to stratigraphic surfaces or facies type but instead reflect the evolution of the ocean through time. This data integrates into the chemostratigraphic global record and contributes to the emerging picture of changing marine chemistry during the latest Precambrian Era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-2 is one of the lymphokines secreted by T helper type 1 cells upon activation mediated by T-cell receptor (TCR) and accessory molecules. The ability to express IL-2 is correlated with T-lineage commitment and is regulated during T cell development and differentiation. Understanding the molecular mechanism of how IL-2 gene inducibility is controlled at each transition and each differentiation process of T-cell development is to understand one aspect of T-cell development. In the present study, we first attempted to elucidate the molecular basis for the developmental changes of IL-2 gene inducibility. We showed that IL-2 gene inducibility is acquired early in immature CD4- CD8-TCR- thymocytes prior to TCR gene rearrangement. Similar to mature T cells, a complete set of transcription factors can be induced at this early stage to activate IL-2 gene expression. The progression of these cells to cortical CD4^+CD8^+TCR^(1o) cells is accompanied by the loss of IL-2 gene inducibility. We demonstrated that DNA binding activities of two transcription factors AP-1 and NF-AT are reduced in cells at this stage. Further, the loss of factor binding, especially AP-1, is attributable to the reduced ability to activate expression of three potential components of AP-1 and NF-AT, including c-Fos, FosB, and Fra-2. We next examined the interaction of transcription factors and the IL-2 promoter in vivo by using the EL4 T cell line and two non-T cell lines. We showed an all-or-none phenomenon regarding the factor-DNA interaction, i.e., in activated T cells, the IL-2 promoter is occupied by sequence-specific transcription factors when all the transcription factors are available; in resting T cells or non-T cells, no specific protein-DNA interaction is observed when only a subset of factors are present in the nuclei. Purposefully reducing a particular set of factor binding activities in stimulated T cells using pharmacological agents cyclosporin A or forskolin also abolished all interactions. The results suggest that a combinatorial and coordinated protein-DNA interaction is required for IL-2 gene activation. The thymocyte experiments clearly illustrated that multiple transcription factors are regulated during intrathymic T-cell development, and this regulation in tum controls the inducibility of the lineage-specific IL-2 gene. The in vivo study of protein-DNA interaction stressed the combinatorial action of transcription factors to stably occupy the IL-2 promoter and to initiate its transcription, and provided a molecular mechanism for changes in IL-2 gene inducibility in T cells undergoing integration of multiple environmental signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.