2 resultados para ECTODERMAL DYSTROPHY
em CaltechTHESIS
Resumo:
Hairpin pyrrole-imdazole polyamides are cell-permeable, sequence-programmable oligomers that bind in the minor groove of DNA. This thesis describes studies of Py-Im polyamides targeted to biologically important DNA repeat sequences for the purpose of modulating disease states. Design of a hairpin polyamide that binds the CG dyad, a site of DNA methylation that can become dysregulated in cancer, is described. We report the synthesis of a DNA methylation antagonist, its sequence specificity and affinity informed by Bind-n-Seq and iteratively designed, which improves inhibitory activity in a cell-free assay by 1000-fold to low nanomolar IC50. Additionally, a hairpin polyamide targeted to the telomeric sequence is found to trigger a slow necrotic-type cell death with the release of inflammatory molecules in a model of B cell lymphoma. The effects of the polyamide are unique in this class of oligomers; its effects are characterized and a functional assay of phagocytosis by macrophages is described. Additionally, hairpin polyamides targeted to pathologically expanded CTG•CAG triplet repeat DNA sequences, the molecular cause of myotonic dystrophy type 1, are synthesized and assessed for toxicity. Lastly, ChIP-seq of Hypoxia-Inducible Factor is performed under hypoxia-induced conditions. The study results show that ChIP-seq can be employed to understand the genome-wide perturbation of Hypoxia-Inducible Factor occupancy by a Py-Im polyamide.
Resumo:
Developmental gene regulatory networks (dGRNs) are assemblages of regulatory genes that direct embryonic development of animal body plans and their morpho-logical structures. dGRNs exhibit recursively-wired circuitry that is encoded in the genome and executed during development. Alteration to the regulatory architecture of dGRNs causes variation in developmental programs both during the development of an individual organism and during the evolution of an individual lineage. The ex-planatory power of these networks is best exemplified by the global dGRN directing early development of the euechinoid sea urchin Strongylocentrotus purpuratus. This network consists of numerous regulatory genes engaging in hundreds of genomic regulatory transactions that collectively direct the delineation of early embryonic domains and the specification of cell lineages. Research on closely-related euechi-noid sea urchins, e.g. Lytechinus variegatus and Paracentrotus lividus, has revealed marked conservation of dGRN architecture in echinoid development, suggesting little appreciable alteration has occurred since their divergence in evolution at least 90 million years ago (mya).
We sought to test whether this observation extends to all sea urchins (echinoids) and undertook a systematic analysis of over 50 regulatory genes in the cidaroid sea urchin Eucidaris tribuloides, surveing their regulatory activity and function in a sea urchin that diverged from euechinoid sea urchins at least 268 mya. Our results revealed extensive alterations have occurred to all levels of echinoid dGRN archi-tecture since the cidaroid-euechinoid divergence. Alterations to mesodermal sub-circuits were particularly striking, including functional di˙erences in specification of non-skeletogenic mesenchyme (NSM), skeletogenic mesenchyme (SM), and en-domesodermal segregation. Specification of endomesodermal embryonic domains revealed that, while their underlying network circuitry had clearly diverged, regu-latory states established in pregastrular embryos of these two groups are strikingly similar. Analyses of E. tribuloides specification leading to the estab-lishment of dorsal-ventral (aboral-oral) larval polarity indicated that regulation of regulatory genes expressed in mesodermal embryonic domains had incurred significantly more alterations than those expressed in endodermal and ectodermal domains. Taken together, this study highlights the ability of dGRN architecture to buffer extensive alterations in the evolution and early development of echinoids and adds further support to the notion that alterations can occur at all levels of dGRN architecture and all stages of embryonic development.