4 resultados para ECONOMIC THEORY
em CaltechTHESIS
Resumo:
Government procurement of a new good or service is a process that usually includes basic research, development, and production. Empirical evidences indicate that investments in research and development (R and D) before production are significant in many defense procurements. Thus, optimal procurement policy should not be only to select the most efficient producer, but also to induce the contractors to design the best product and to develop the best technology. It is difficult to apply the current economic theory of optimal procurement and contracting, which has emphasized production, but ignored R and D, to many cases of procurement.
In this thesis, I provide basic models of both R and D and production in the procurement process where a number of firms invest in private R and D and compete for a government contract. R and D is modeled as a stochastic cost-reduction process. The government is considered both as a profit-maximizer and a procurement cost minimizer. In comparison to the literature, the following results derived from my models are significant. First, R and D matters in procurement contracting. When offering the optimal contract the government will be better off if it correctly takes into account costly private R and D investment. Second, competition matters. The optimal contract and the total equilibrium R and D expenditures vary with the number of firms. The government usually does not prefer infinite competition among firms. Instead, it prefers free entry of firms. Third, under a R and D technology with the constant marginal returns-to-scale, it is socially optimal to have only one firm to conduct all of the R and D and production. Fourth, in an independent private values environment with risk-neutral firms, an informed government should select one of four standard auction procedures with an appropriate announced reserve price, acting as if it does not have any private information.
Resumo:
In three essays we examine user-generated product ratings with aggregation. While recommendation systems have been studied extensively, this simple type of recommendation system has been neglected, despite its prevalence in the field. We develop a novel theoretical model of user-generated ratings. This model improves upon previous work in three ways: it considers rational agents and allows them to abstain from rating when rating is costly; it incorporates rating aggregation (such as averaging ratings); and it considers the effect on rating strategies of multiple simultaneous raters. In the first essay we provide a partial characterization of equilibrium behavior. In the second essay we test this theoretical model in laboratory, and in the third we apply established behavioral models to the data generated in the lab. This study provides clues to the prevalence of extreme-valued ratings in field implementations. We show theoretically that in equilibrium, ratings distributions do not represent the value distributions of sincere ratings. Indeed, we show that if rating strategies follow a set of regularity conditions, then in equilibrium the rate at which players participate is increasing in the extremity of agents' valuations of the product. This theoretical prediction is realized in the lab. We also find that human subjects show a disproportionate predilection for sincere rating, and that when they do send insincere ratings, they are almost always in the direction of exaggeration. Both sincere and exaggerated ratings occur with great frequency despite the fact that such rating strategies are not in subjects' best interest. We therefore apply the behavioral concepts of quantal response equilibrium (QRE) and cursed equilibrium (CE) to the experimental data. Together, these theories explain the data significantly better than does a theory of rational, Bayesian behavior -- accurately predicting key comparative statics. However, the theories fail to predict the high rates of sincerity, and it is clear that a better theory is needed.
Resumo:
This thesis studies decision making under uncertainty and how economic agents respond to information. The classic model of subjective expected utility and Bayesian updating is often at odds with empirical and experimental results; people exhibit systematic biases in information processing and often exhibit aversion to ambiguity. The aim of this work is to develop simple models that capture observed biases and study their economic implications.
In the first chapter I present an axiomatic model of cognitive dissonance, in which an agent's response to information explicitly depends upon past actions. I introduce novel behavioral axioms and derive a representation in which beliefs are directionally updated. The agent twists the information and overweights states in which his past actions provide a higher payoff. I then characterize two special cases of the representation. In the first case, the agent distorts the likelihood ratio of two states by a function of the utility values of the previous action in those states. In the second case, the agent's posterior beliefs are a convex combination of the Bayesian belief and the one which maximizes the conditional value of the previous action. Within the second case a unique parameter captures the agent's sensitivity to dissonance, and I characterize a way to compare sensitivity to dissonance between individuals. Lastly, I develop several simple applications and show that cognitive dissonance contributes to the equity premium and price volatility, asymmetric reaction to news, and belief polarization.
The second chapter characterizes a decision maker with sticky beliefs. That is, a decision maker who does not update enough in response to information, where enough means as a Bayesian decision maker would. This chapter provides axiomatic foundations for sticky beliefs by weakening the standard axioms of dynamic consistency and consequentialism. I derive a representation in which updated beliefs are a convex combination of the prior and the Bayesian posterior. A unique parameter captures the weight on the prior and is interpreted as the agent's measure of belief stickiness or conservatism bias. This parameter is endogenously identified from preferences and is easily elicited from experimental data.
The third chapter deals with updating in the face of ambiguity, using the framework of Gilboa and Schmeidler. There is no consensus on the correct way way to update a set of priors. Current methods either do not allow a decision maker to make an inference about her priors or require an extreme level of inference. In this chapter I propose and axiomatize a general model of updating a set of priors. A decision maker who updates her beliefs in accordance with the model can be thought of as one that chooses a threshold that is used to determine whether a prior is plausible, given some observation. She retains the plausible priors and applies Bayes' rule. This model includes generalized Bayesian updating and maximum likelihood updating as special cases.
Resumo:
Time, risk, and attention are all integral to economic decision making. The aim of this work is to understand those key components of decision making using a variety of approaches: providing axiomatic characterizations to investigate time discounting, generating measures of visual attention to infer consumers' intentions, and examining data from unique field settings.
Chapter 2, co-authored with Federico Echenique and Kota Saito, presents the first revealed-preference characterizations of exponentially-discounted utility model and its generalizations. My characterizations provide non-parametric revealed-preference tests. I apply the tests to data from a recent experiment, and find that the axiomatization delivers new insights on a dataset that had been analyzed by traditional parametric methods.
Chapter 3, co-authored with Min Jeong Kang and Colin Camerer, investigates whether "pre-choice" measures of visual attention improve in prediction of consumers' purchase intentions. We measure participants' visual attention using eyetracking or mousetracking while they make hypothetical as well as real purchase decisions. I find that different patterns of visual attention are associated with hypothetical and real decisions. I then demonstrate that including information on visual attention improves prediction of purchase decisions when attention is measured with mousetracking.
Chapter 4 investigates individuals' attitudes towards risk in a high-stakes environment using data from a TV game show, Jeopardy!. I first quantify players' subjective beliefs about answering questions correctly. Using those beliefs in estimation, I find that the representative player is risk averse. I then find that trailing players tend to wager more than "folk" strategies that are known among the community of contestants and fans, and this tendency is related to their confidence. I also find gender differences: male players take more risk than female players, and even more so when they are competing against two other male players.
Chapter 5, co-authored with Colin Camerer, investigates the dynamics of the favorite-longshot bias (FLB) using data on horse race betting from an online exchange that allows bettors to trade "in-play." I find that probabilistic forecasts implied by market prices before start of the races are well-calibrated, but the degree of FLB increases significantly as the events approach toward the end.