3 resultados para Dorsal vessel
em CaltechTHESIS
Resumo:
This dissertation contains three essays on mechanism design. The common goal of these essays is to assist in the solution of different resource allocation problems where asymmetric information creates obstacles to the efficient allocation of resources. In each essay, we present a mechanism that satisfactorily solves the resource allocation problem and study some of its properties. In our first essay, ”Combinatorial Assignment under Dichotomous Preferences”, we present a class of problems akin to time scheduling without a pre-existing time grid, and propose a mechanism that is efficient, strategy-proof and envy-free. Our second essay, ”Monitoring Costs and the Management of Common-Pool Resources”, studies what can happen to an existing mechanism — the individual tradable quotas (ITQ) mechanism, also known as the cap-and-trade mechanism — when quota enforcement is imperfect and costly. Our third essay, ”Vessel Buyback”, coauthored with John O. Ledyard, presents an auction design that can be used to buy back excess capital in overcapitalized industries.
Resumo:
Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than 1 μm in diameter could rupture blood vessels under clinical SWL conditions.
Resumo:
Unit activity was recorded from the midbrain and pons of 40 freely moving rats in an appetitive classical conditioning situation. Responses to auditory stimuli were observed from 100 units before and during a conditioning procedure in which presentation of food occurred 1 sec after the onset of the auditory stimulus. Conditioned unit responses (i.e., spike rate accelerations or decelerations) were considered to be positive when 1) no similar responses appeared prior to conditioning, and 2) latencies were equal to or less than those of sensory responses derived from the inferior colliculus. Such short latency conditioned unit responses were recorded from 11 probes located in the mid-lateral pert of the ventral region of the brain stem. This region was differentiated from paramedian, far lateral and dorsal parts of the brain stem reticular formation. Conditioned unit responses of considerably longer latencies were recorded from 76 probe located in these other regions. Among the longer latency responses interesting differences appeared in experiments conducted after the first conditioning series was completed. With additional training, units in the "reticular activating system" of midbrain and pons tended to yield stabilized responses in the early portion of the CS-US interval closely related in time to the orientation responses evoked by the CS. In contrast, the responses of units in the limbic midbrain tended to stabilize in the later part of the CS-US interval closely related in time to preparatory responses tied to the US. During extinction when the auditory stimulus was no longer followed by presentation of food, many of the responses were reduced to their pre-conditioning levels. However, there was a tendency for units which had displayed short latency responses on the first conditioning day to be more resistant to extinction than units which had displayed longer latency conditioned responses. The data were interpreted as indicating a local correlate of learning in the reticular formation of midbrain end pons and a separation of the midbrain system into at least two areas: 1) the classical "reticular activating system" related to orienting reactions, and 2) the limbic midbrain areas related to drives and rewards. Because the ventral and mid-lateral area with very short latency conditioned responses was not clearly tied to either of these; it was considered as possibly representing a third division.