4 resultados para Dopamine D-2-receptor Occupancy
em CaltechTHESIS
Resumo:
The use of spiro [2.4]hepta-4,6-diene-1-methanol 7 as a general precursor for the synthesis of highly functionalized cyclopentyl rings is described. Diene 7 was converted to its silyl protected 4-nitrile derivative 24 in 46% overall yield. The cyclopropyl ring of 24 reacted with soft carbanionic nucleophiles to give ring opened homo-conjugate addition products 25a-h in 76-97% yield without loss of optical purity. The addition products could be further manipulated by selective mono-hydrogenation to give 1,2 substituted cyclopentenes 26a-e in 85-96% yield.
Diene 7 was used as a starting material for studies directed toward the synthesis of the stereochemically dense chloro-cyclopentyl core of palau'amine 1. Two advanced intermediates 50 and 72 were synthesized. Attempts to effect intramolecular chlorine transfer with 50 were unsuccessful. Attempted intramolecular chlorine transfer with 72 led, instead, to an oxygenated species resulting from oxygen radical trapping.
The enantioselective synthesis of the stereochemically dense chloro-cyclopenty l core of axinellamines A-D 2-5 starting from 7 is also described. The core is synthesized in 4.6% yield over 24 steps. Nakamura's radical dehalogenative hydroxylation is applied for the first time to a cyclopropyl carbonyl iodide to give the ring-opened product in 86% yield. Bolm's meso-anhydride desymmetrization is used to introduce asymmetry in a norbornene intermediate. The final step is a diastereoselective intermolecular chlorination using Barton's methodology to achieve chlorine transfer in 76% yield.
Resumo:
Efficient and accurate localization of membrane proteins is essential to all cells and requires a complex cascade of interactions between protein machineries. This is exemplified in the recently discovered Guided Entry of Tail-anchored protein pathway, in which the central targeting factor Get3 must sequentially interact with three distinct binding partners (Get4, Get1 and Get2) to ensure the targeted delivery of Tail-anchored proteins to the endoplasmic reticulum membrane. To understand the molecular and energetic principles that provide the vectorial driving force of these interactions, we used a quantitative fluorescence approach combined with mechanistic enzymology to monitor the effector interactions of Get3 at each stage of Tail-anchored protein targeting. We show that nucleotide and membrane protein substrate generate a gradient of interaction energies that drive the cyclic and ordered transit of Get3 from Get4 to Get2 and lastly to Get1. These data also define how the Get3/Tail-anchored complex is captured, handed over, and disassembled by the Get1/2 receptor at the membrane, and reveal a novel role for Get4/5 in recycling Get3 from the endoplasmic reticulum membrane at the end of the targeting reaction. These results provide general insights into how complex cascades of protein interactions are coordinated and coupled to energy inputs in biological systems.
Resumo:
This dissertation primarily describes chemical-scale studies of nicotinic acetylcholine receptors (nAChRs) in order to better understand ligand-receptor selectivity and allosteric modulation influences during receptor activation. Electrophysiology coupled with canonical and non-canonical amino acids mutagenesis is used to probe subtle changes in receptor function.
The first half of this dissertation focuses on differential agonist selectivity of α4β2-containing nAChRs. The α4β2 nAChR can assemble in alternative stoichiometries as well as assemble with other accessory subunits. Chapter 2 identifies key structural residues that dictate binding and activation of three stoichiometry-dependent α4β2 receptor ligands: sazetidine-A, cytisine, and NS9283. These do not follow previously suggested hydrogen-bonding patterns of selectivity. Instead, three residues on the complementary subunit strongly influence binding ability of a ligand and receptor activation. Chapter 3 involves isolation of a α5α4β2 receptor-enriched population to test for a potential alternative agonist binding location at the α5 α4 interface. Results strongly suggest that agonist occupation of this site is not necessary for receptor activation and that the α5 subunit only incorporates at the accessory subunit location.
The second half of this dissertation seeks to identify residue interactions with positive allosteric modulators (PAMs) of the α7 nAChR. Chapter 4 focuses on methods development to study loss of potentiation of Type I PAMs, which indicate residues vital to propagation of PAM effects and/or binding. Chapter 5 investigates α7 receptor modulation by a Type II PAM (PNU 120596). These results show that PNU 120596 does not alter the agonist binding site, thus is relegated to influencing only the gating component of activation. From this, we were able to map a potential network of residues from the agonist binding site to the proposed PNU 120596 binding site that are essential for receptor potentiation.
Resumo:
This dissertation presents the results of studies of several rotationally- resolved resonance enhanced multiphoton ionization (REMPI) processes in some simple molecular systems. The objective of these studies is to quantitatively identify the underlying dynamics of this highly state-specific process which utilizes the narrow bandwidth radiation of a laser to ionize a molecule by first preparing an excited state via multiphoton absorption and subsequently ionizing that state before it can decay. Coupled with high-resolution photoelectron spectroscopy, REMPI is clearly an important probe of molecular excited states and their photoioniza tion dynamics.
A key feature of our studies is that they are carried out using accurate Hartree-Fock orbitals to describe the photoelectron orbitals of the molecular ions. The use of such photoelectron orbitals is important in rotationally-resolved studies where the angular momentum coupling in the photoelectron orbital plays a significant role in the photoionization dynamics. In these studies the Hartree-Fock molecular molecular photoelectron orbitals are obtained by numerical solution of a Lippmann-Schwinger integral equation.
Studies reported here include investigations of (i) ionic rotational branching ratios and their energy dependence for REMPI via the A^2Σ^+(3sσ) and D^2Σ^+(3pσ)states of NO, (ii) the influence of angular momentum constraints on branching ratios at low photoelectron energies for REMPI via low-J levels of the resonant intermediate state, (iii) the strong dependence of photoelectron angular distributions on final ionic rotational state and on the alignment in REMPI of the A^2Σ^+ state of NO, (iv) vibrational state dependence of ionic rotational branching ratios arising from rapid orbital evolution in resonant states (E'^2Σ^+(3pσ) of CH), (v) the influence of rovibronic interactions on the rotational branching ratios seen in REMPI via the D^2Σ^+(3pσ) state of NO, and (vi) effects of laser intensity on the photoionization dynamics of REMPI.