3 resultados para Do-it-yourself work.
em CaltechTHESIS
Resumo:
The search for reliable proxies of past deep ocean temperature and salinity has proved difficult, thereby limiting our ability to understand the coupling of ocean circulation and climate over glacial-interglacial timescales. Previous inferences of deep ocean temperature and salinity from sediment pore fluid oxygen isotopes and chlorinity indicate that the deep ocean density structure at the Last Glacial Maximum (LGM, approximately 20,000 years BP) was set by salinity, and that the density contrast between northern and southern sourced deep waters was markedly greater than in the modern ocean. High density stratification could help explain the marked contrast in carbon isotope distribution recorded in the LGM ocean relative to that we observe today, but what made the ocean's density structure so different at the LGM? How did it evolve from one state to another? Further, given the sparsity of the LGM temperature and salinity data set, what else can we learn by increasing the spatial density of proxy records?
We investigate the cause and feasibility of a highly and salinity stratified deep ocean at the LGM and we work to increase the amount of information we can glean about the past ocean from pore fluid profiles of oxygen isotopes and chloride. Using a coupled ocean--sea ice--ice shelf cavity model we test whether the deep ocean density structure at the LGM can be explained by ice--ocean interactions over the Antarctic continental shelves, and show that a large contribution of the LGM salinity stratification can be explained through lower ocean temperature. In order to extract the maximum information from pore fluid profiles of oxygen isotopes and chloride we evaluate several inverse methods for ill-posed problems and their ability to recover bottom water histories from sediment pore fluid profiles. We demonstrate that Bayesian Markov Chain Monte Carlo parameter estimation techniques enable us to robustly recover the full solution space of bottom water histories, not only at the LGM, but through the most recent deglaciation and the Holocene up to the present. Finally, we evaluate a non-destructive pore fluid sampling technique, Rhizon samplers, in comparison to traditional squeezing methods and show that despite their promise, Rhizons are unlikely to be a good sampling tool for pore fluid measurements of oxygen isotopes and chloride.
Resumo:
In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.
Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.
Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.
Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.
Resumo:
Energy and sustainability have become one of the most critical issues of our generation. While the abundant potential of renewable energy such as solar and wind provides a real opportunity for sustainability, their intermittency and uncertainty present a daunting operating challenge. This thesis aims to develop analytical models, deployable algorithms, and real systems to enable efficient integration of renewable energy into complex distributed systems with limited information.
The first thrust of the thesis is to make IT systems more sustainable by facilitating the integration of renewable energy into these systems. IT represents the fastest growing sectors in energy usage and greenhouse gas pollution. Over the last decade there are dramatic improvements in the energy efficiency of IT systems, but the efficiency improvements do not necessarily lead to reduction in energy consumption because more servers are demanded. Further, little effort has been put in making IT more sustainable, and most of the improvements are from improved "engineering" rather than improved "algorithms". In contrast, my work focuses on developing algorithms with rigorous theoretical analysis that improve the sustainability of IT. In particular, this thesis seeks to exploit the flexibilities of cloud workloads both (i) in time by scheduling delay-tolerant workloads and (ii) in space by routing requests to geographically diverse data centers. These opportunities allow data centers to adaptively respond to renewable availability, varying cooling efficiency, and fluctuating energy prices, while still meeting performance requirements. The design of the enabling algorithms is however very challenging because of limited information, non-smooth objective functions and the need for distributed control. Novel distributed algorithms are developed with theoretically provable guarantees to enable the "follow the renewables" routing. Moving from theory to practice, I helped HP design and implement industry's first Net-zero Energy Data Center.
The second thrust of this thesis is to use IT systems to improve the sustainability and efficiency of our energy infrastructure through data center demand response. The main challenges as we integrate more renewable sources to the existing power grid come from the fluctuation and unpredictability of renewable generation. Although energy storage and reserves can potentially solve the issues, they are very costly. One promising alternative is to make the cloud data centers demand responsive. The potential of such an approach is huge.
To realize this potential, we need adaptive and distributed control of cloud data centers and new electricity market designs for distributed electricity resources. My work is progressing in both directions. In particular, I have designed online algorithms with theoretically guaranteed performance for data center operators to deal with uncertainties under popular demand response programs. Based on local control rules of customers, I have further designed new pricing schemes for demand response to align the interests of customers, utility companies, and the society to improve social welfare.