3 resultados para Divided Difference
em CaltechTHESIS
Resumo:
Nearly all young stars are variable, with the variability traditionally divided into two classes: periodic variables and aperiodic or "irregular" variables. Periodic variables have been studied extensively, typically using periodograms, while aperiodic variables have received much less attention due to a lack of standard statistical tools. However, aperiodic variability can serve as a powerful probe of young star accretion physics and inner circumstellar disk structure. For my dissertation, I analyzed data from a large-scale, long-term survey of the nearby North America Nebula complex, using Palomar Transient Factory photometric time series collected on a nightly or every few night cadence over several years. This survey is the most thorough exploration of variability in a sample of thousands of young stars over time baselines of days to years, revealing a rich array of lightcurve shapes, amplitudes, and timescales.
I have constrained the timescale distribution of all young variables, periodic and aperiodic, on timescales from less than a day to ~100 days. I have shown that the distribution of timescales for aperiodic variables peaks at a few days, with relatively few (~15%) sources dominated by variability on tens of days or longer. My constraints on aperiodic timescale distributions are based on two new tools, magnitude- vs. time-difference (Δm-Δt) plots and peak-finding plots, for describing aperiodic lightcurves; this thesis provides simulations of their performance and presents recommendations on how to apply them to aperiodic signals in other time series data sets. In addition, I have measured the error introduced into colors or SEDs from combining photometry of variable sources taken at different epochs. These are the first quantitative results to be presented on the distributions in amplitude and time scale for young aperiodic variables, particularly those varying on timescales of weeks to months.
Resumo:
This thesis consists of three essays in the areas of political economy and game theory, unified by their focus on the effects of pre-play communication on equilibrium outcomes.
Communication is fundamental to elections. Chapter 2 extends canonical voter turnout models, where citizens, divided into two competing parties, choose between costly voting and abstaining, to include any form of communication, and characterizes the resulting set of Aumann's correlated equilibria. In contrast to previous research, high-turnout equilibria exist in large electorates and uncertain environments. This difference arises because communication can coordinate behavior in such a way that citizens find it incentive compatible to follow their correlated signals to vote more. The equilibria have expected turnout of at least twice the size of the minority for a wide range of positive voting costs.
In Chapter 3 I introduce a new equilibrium concept, called subcorrelated equilibrium, which fills the gap between Nash and correlated equilibrium, extending the latter to multiple mediators. Subcommunication equilibrium similarly extends communication equilibrium for incomplete information games. I explore the properties of these solutions and establish an equivalence between a subset of subcommunication equilibria and Myerson's quasi-principals' equilibria. I characterize an upper bound on expected turnout supported by subcorrelated equilibrium in the turnout game.
Chapter 4, co-authored with Thomas Palfrey, reports a new study of the effect of communication on voter turnout using a laboratory experiment. Before voting occurs, subjects may engage in various kinds of pre-play communication through computers. We study three communication treatments: No Communication, a control; Public Communication, where voters exchange public messages with all other voters, and Party Communication, where messages are exchanged only within one's own party. Our results point to a strong interaction effect between the form of communication and the voting cost. With a low voting cost, party communication increases turnout, while public communication decreases turnout. The data are consistent with correlated equilibrium play. With a high voting cost, public communication increases turnout. With communication, we find essentially no support for the standard Nash equilibrium turnout predictions.
Resumo:
Part I:
The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.
Part II:
When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.