3 resultados para Divergent and convergent thinking

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the 2d O(3) model with the standard action by Monte Carlo simulation at couplings β up to 2.05. We measure the energy density, mass gap and susceptibility of the model, and gather high statistics on lattices of size L ≤ 1024 using the Floating Point Systems T-series vector hypercube and the Thinking Machines Corp.'s Connection Machine 2. Asymptotic scaling does not appear to set in for this action, even at β = 2.10, where the correlation length is 420. We observe a 20% difference between our estimate m/Λ^─_(Ms) = 3.52(6) at this β and the recent exact analytical result . We use the overrelaxation algorithm interleaved with Metropolis updates and show that decorrelation time scales with the correlation length and the number of overrelaxation steps per sweep. We determine its effective dynamical critical exponent to be z' = 1.079(10); thus critical slowing down is reduced significantly for this local algorithm that is vectorizable and parallelizable.

We also use the cluster Monte Carlo algorithms, which are non-local Monte Carlo update schemes which can greatly increase the efficiency of computer simulations of spin models. The major computational task in these algorithms is connected component labeling, to identify clusters of connected sites on a lattice. We have devised some new SIMD component labeling algorithms, and implemented them on the Connection Machine. We investigate their performance when applied to the cluster update of the two dimensional Ising spin model.

Finally we use a Monte Carlo Renormalization Group method to directly measure the couplings of block Hamiltonians at different blocking levels. For the usual averaging block transformation we confirm the renormalized trajectory (RT) observed by Okawa. For another improved probabilistic block transformation we find the RT, showing that it is much closer to the Standard Action. We then use this block transformation to obtain the discrete β-function of the model which we compare to the perturbative result. We do not see convergence, except when using a rescaled coupling β_E to effectively resum the series. For the latter case we see agreement for m/ Λ^─_(Ms) at , β = 2.14, 2.26, 2.38 and 2.50. To three loops m/Λ^─_(Ms) = 3.047(35) at β = 2.50, which is very close to the exact value m/ Λ^─_(Ms) = 2.943. Our last point at β = 2.62 disagrees with this estimate however.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plate tectonics shapes our dynamic planet through the creation and destruction of lithosphere. This work focuses on increasing our understanding of the processes at convergent and divergent boundaries through geologic and geophysical observations at modern plate boundaries. Recent work had shown that the subducting slab in central Mexico is most likely the flattest on Earth, yet there was no consensus about what caused it to originate. The first chapter of this thesis sets out to systematically test all previously proposed mechanisms for slab flattening on the Mexican case. What we have discovered is that there is only one model for which we can find no contradictory evidence. The lack of applicability of the standard mechanisms used to explain flat subduction in the Mexican example led us to question their applications globally. The second chapter expands the search for a cause of flat subduction, in both space and time. We focus on the historical record of flat slabs in South America and look for a correlation between the shallowing and steepening of slab segments with relation to the inferred thickness of the subducting oceanic crust. Using plate reconstructions and the assumption that a crustal anomaly formed on a spreading ridge will produce two conjugate features, we recreate the history of subduction along the South American margin and find that there is no correlation between the subduction of a bathymetric highs and shallow subduction. These studies have proven that a subducting crustal anomaly is neither a sufficient or necessary condition of flat slab subduction. The final chapter in this thesis looks at the divergent plate boundary in the Gulf of California. Through geologic reconnaissance mapping and an intensive paleomagnetic sampling campaign, we try to constrain the location and orientation of a widespread volcanic marker unit, the Tuff of San Felipe. Although the resolution of the applied magnetic susceptibility technique proved inadequate to contain the direction of the pyroclastic flow with high precision, we have been able to detect the tectonic rotation of coherent blocks as well as rotation within blocks.