10 resultados para Development and applications
em CaltechTHESIS
Resumo:
In this work, the development of a probabilistic approach to robust control is motivated by structural control applications in civil engineering. Often in civil structural applications, a system's performance is specified in terms of its reliability. In addition, the model and input uncertainty for the system may be described most appropriately using probabilistic or "soft" bounds on the model and input sets. The probabilistic robust control methodology contrasts with existing H∞/μ robust control methodologies that do not use probability information for the model and input uncertainty sets, yielding only the guaranteed (i.e., "worst-case") system performance, and no information about the system's probable performance which would be of interest to civil engineers.
The design objective for the probabilistic robust controller is to maximize the reliability of the uncertain structure/controller system for a probabilistically-described uncertain excitation. The robust performance is computed for a set of possible models by weighting the conditional performance probability for a particular model by the probability of that model, then integrating over the set of possible models. This integration is accomplished efficiently using an asymptotic approximation. The probable performance can be optimized numerically over the class of allowable controllers to find the optimal controller. Also, if structural response data becomes available from a controlled structure, its probable performance can easily be updated using Bayes's Theorem to update the probability distribution over the set of possible models. An updated optimal controller can then be produced, if desired, by following the original procedure. Thus, the probabilistic framework integrates system identification and robust control in a natural manner.
The probabilistic robust control methodology is applied to two systems in this thesis. The first is a high-fidelity computer model of a benchmark structural control laboratory experiment. For this application, uncertainty in the input model only is considered. The probabilistic control design minimizes the failure probability of the benchmark system while remaining robust with respect to the input model uncertainty. The performance of an optimal low-order controller compares favorably with higher-order controllers for the same benchmark system which are based on other approaches. The second application is to the Caltech Flexible Structure, which is a light-weight aluminum truss structure actuated by three voice coil actuators. A controller is designed to minimize the failure probability for a nominal model of this system. Furthermore, the method for updating the model-based performance calculation given new response data from the system is illustrated.
Resumo:
Since its discovery in 1896, the Buchner reaction has fascinated chemists for more than a century. The highly reactive nature of the carbene intermediates allows for facile dearomatization of stable aromatic rings, and provides access to a diverse array of cyclopropane and seven-membered ring architectures. The power inherent in this transformation has been exploited in the context of a natural product total synthesis and methodology studies.
The total synthesis work details efforts employed in the enantioselective total synthesis of (+)-salvileucalin B. The fully-substituted cyclopropane within the core of the molecule arises from an unprecedented intramolecular Buchner reaction involving a highly functionalized arene and an α-diazo-β-ketonitrile. An unusual retro-Claisen rearrangement of a complex late-stage intermediate was discovered on route to the natural product.
The unique reactivity of α-diazo-β-ketonitriles toward arene cyclopropanation was then investigated in a broader methodological study. This specific di-substituted diazo moiety possesses hitherto unreported selectivity in intramolecular Buchner reactions. This technology was enables the preparation of highly functionalized norcaradienes and cyclopropanes, which themselves undergo various ring opening transformations to afford complex polycyclic structures.
Finally, an enantioselective variant of the intramolecular Buchner reaction is described. Various chiral copper and dirhodium catalysts afforded moderate stereoinduction in the cyclization event.
Resumo:
This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.
Resumo:
To better understand human diseases, much recent work has focused on proteins to either identify disease targets through proteomics or produce therapeutics via protein engineering. Noncanonical amino acids (ncAAs) are tools for altering the chemical and physical properties of proteins, providing a facile strategy not only to label proteins but also to engineer proteins with novel properties. My thesis research has focused on the development and applications of noncanonical amino acids in identifying, imaging, and engineering proteins for studying human diseases. Chapter 1 introduces the concept of ncAAs and reveals insights to how I chose my thesis projects.
ncAAs have been incorporated to tag and enrich newly synthesized proteins for mass spectrometry through a method termed BONCAT, or bioorthogonal noncanonical amino acid tagging. Chapter 2 describes the investigation of the proteomic response of human breast cancer cells to induced expression of tumor suppressor microRNA miR-126 by combining BONCAT with another proteomic method, SILAC or stable isotope labeling by amino acids in cell culture. This proteomic analysis led to the discovery of a direct target of miR-126, shedding new light on its role in suppressing cancer metastasis.
In addition to mass spectrometry, ncAAs can also be utilized to fluorescently label proteins. Chapter 3 details the synthesis of a set of cell-permeant cyclooctyne probes and demonstration of selective labeling of newly synthesized proteins in live mammalian cells using azidohomoalanine. Similar to live cell imaging, the ability to selectively label a particular cell type within a mixed cell population is important to interrogating many biological systems, such as tumor microenvironments. By taking advantage of the metabolic differences between cancer and normal cells, Chapter 5 discusses efforts to develop selective labeling of cancer cells using a glutamine analogue.
Furthermore, Chapter 4 describes the first demonstration of global replacement at polar amino acid positions and its application in developing an alternative PEGylation strategy for therapeutic proteins. Polar amino acids typically occupy solvent-exposed positions on the protein surface, and incorporation of noncanonical amino acids at these positions should allow easier modification and cause less perturbation compared to replacements at the interior positions of proteins.
Resumo:
This dissertation covers progress with bimetallic polymerization catalysts. The complexes we have designed were aimed at expanding the capabilities of homogeneous polymerization catalysts by taking advantage of multimetallic effects. Such effects were examined in group 4 and group 10 bimetallic complexes; proximity and steric repulsion were determined to be major factors in the effects observed.
Chapters 2 and 3 introduce the rigid p-terphenyl dinucleating framework utilized in most of this thesis. The permethylation of the central arene allows for the separation of syn and anti atropisomers of the terphenyl compounds. Kinetic studies were carried out to examine the isomerization of the dinucleating bis(salicylaldimine) ligand precursors. Metallation of the syn and anti bis(salicylaldimine)s using Ni(Me)2(tmeda) and excess pyridine afforded dinickel bisphenoxyiminato complexes with a methyl and a pyridyl ligand on each nickel. The syn and anti atropisomers of the dinickel complexes were structurally characterized and utilized in ethylene and ethylene/α-olefin polymerizations. Monometallic analogues were also synthesized and tested for polymerization activity. Ethylene polymerizations were performed in the presence of primary, secondary, and tertiary amines – additives that generally deactivate nickel polymerization catalysts. Inhibition of this deactivation was observed with the syn atropisomer of the bimetallic species, but not with the anti or monometallic analogues. A mechanism was proposed wherein steric repulsion of the substituents on proximal nickel centers disfavors simultaneous ligation of base to both of the metal centers. The bimetallic effect has been explored with respect to size and binding ability of the added base.
Chapter 4 presents the optimization of the bisphenoxyimine ligand synthesis and synthesis of syn and anti m-terphenyl analogues. Metallation with NiClMe(PMe3)2 yielded phosphine-ligated dinickel complexes, which have been structurally characterized. Ethylene/1-hexene copolymerizations in the presence of amines using Ni(COD)2 as a phosphine scavenger showed significantly improved activity relative to the pyridine-ligated analogues. Incorporation of amino olefins in copolymerizations with ethylene was accomplished, and a mechanism was proposed based on proximal effects. Copolymerization trials with a variety of amino olefins and ethylene/1-hexene/amino olefin terpolymerizations were completed.
Early transition metal complexes based on the rigid p-terphenyl framework were designed with a variety of donor sets (Chapter 5 and Appendix B). Chapter 5 details the use of syn dizirconium di[amine bis(phenolate)] complexes for isoselective 1-hexene and propylene homopolymerizations. Ligand variation and monometallic complexes were studied to determine the origin of tacticity control. A mechanistic proposal was presented based on the symmetry at zirconium and the steric effects of the proximal metal center. Appendix B covers additional studies of bimetallic early transition metal complexes based on the p-terphenyl. Dititanium, dizirconium, and asymmetric complexes with bisphenoxyiminato ligands and derivatives thereof were targeted. Progress toward the synthesis of these complexes is described along with preliminary polymerization data. 1-hexene/diene copolymerizations and attempted polymerizations in the presence of ethers and esters with the syn dizirconium di[amine bis(phenolate)] complexes demonstrate the potential for further applications of this system in catalysis.
Appendix A includes work toward palladium catalysts for insertion polymerization of polar monomers. These complexes were based on dioxime and diimine frameworks with the intent of binding Lewis acidic metals at the oxime oxygens, at pendant phenolic donors, or at pendant aminediol moieties. The synthesis and structural characterization of a number of palladium and Lewis acid complexes is presented. Due to the instability of the desired species, efforts toward isolation of the desired complexes proved unsuccessful, though preliminary ethylene/methyl acrylate copolymerizations using in situ activation of the palladium species were attempted.
Resumo:
This dissertation will cover several disparate topics, with the overarching theme centering on the investigation of organometallic C-H activation and hydrocarbon transformation and upgrading. Chapters 2 and 3 discuss iridium and rhodium analogues of the Shilov cycle catalyst for methane to methanol oxidation, and Chapter 4 on the recently discovered ROA mechanistic motif in catalysts for various alkane partial oxidation reactions. In addition, Chapter 5 discusses the mechanism of nickel pyridine bisoxazoline Negishi catalysts for asymmetric and stereoconvergent C-C coupling, and the appendices discuss smaller projects on rhodium H/D exchange catalysts and DFT method benchmarking.
Resumo:
In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.
Resumo:
We develop a method for performing one-loop calculations in finite systems that is based on using the WKB approximation for the high energy states. This approximation allows us to absorb all the counterterms analytically and thereby avoids the need for extreme numerical precision that was required by previous methods. In addition, the local approximation makes this method well suited for self-consistent calculations. We then discuss the application of relativistic mean field methods to the atomic nucleus. Self-consistent, one loop calculations in the Walecka model are performed and the role of the vacuum in this model is analyzed. This model predicts that vacuum polarization effects are responsible for up to five percent of the local nucleon density. Within this framework the possible role of strangeness degrees of freedom is studied. We find that strangeness polarization can increase the kaon-nucleus scattering cross section by ten percent. By introducing a cutoff into the model, the dependence of the model on short-distance physics, where its validity is doubtful, is calculated. The model is very sensitive to cutoffs around one GeV.
Resumo:
The photochemically induced reductive elimination of cyclopropanes from bis(η5-cyclopentadienyl)titanacyclobutanes has been examined. Stereochemical labelling studies indicate that the cyclopropane is initially formed in a 6±1:1, ratio favoring retention of stereochemistry. The starting titanacyclobutane is isomerized during the course of the reaction. The isomerization of the starting material results from metal-carbon bond homolysis to yield a 1,4-biradical, which can either close to give the starting material or generate cyclopropane. The 1,4-biradical can be observed through a cyclopropyl carbinyl rearrangement employing 2-bis(η5- cyclopentadienyl)titana-5,5-dimethylbicyclo[2.1.0]pentane, to give the titanium alkylidene, 1-bis(η5-cyclopentadienyl)titana-3,3-dimethyl-1,4- pentadiene, which can be observed directly by NMR at low temperature.
The oxidation of titanacyclobutanes by chemical and electrochemical methods also yields cyclopropanes. Reduction of the metal center does not yield cyclopropanes. Depending on the oxidant, stereochemically labelled titanacyclobutanes yield cyclopropanes that are between 7:1 and 100:1 retention:isomerization. The fragmentation reaction resembles the photochemically induced reductive elimination. Both result from formal oxidation of a metal-carbon bond, which then results in very rapid formation of cyclopropane.
The titanocene generated photochemically reacts with a variety of substrates even at low temperature. Titanocene can be generated in a glass at 77 K. The titanocene can be trapped in noncoordinating solvents in high yield with bulky internal acetylenes to give monoacetylene adducts of titanocene. Less bulky acetylenes give the titanacyclopentadienes. The titanocene can be trapped with olefins to give less stable adducts, which appear by NMR analysis to be intermediate in structure between a titanacyclopropane and an η2 olefin adduct of titanocene. Reaction of titanocene with butadiene gives a stable product, which appears to be the s-trans butadiene adduct of titanocene. It does not isomerize on heating. Titanocene reacts with epoxides to give titanocene-µ-oxo polymer and olefin. Stereochemically labelled epoxides and episulfides yield isomerized olefin upon deoxygenation by titanocene. The observations are rationalized as a result of a 1,4-biradical formed by stepwise insertion of titanocene into a carbon-oxygen bond.
Resumo:
The high computational cost of correlated wavefunction theory (WFT) calculations has motivated the development of numerous methods to partition the description of large chemical systems into smaller subsystem calculations. For example, WFT-in-DFT embedding methods facilitate the partitioning of a system into two subsystems: a subsystem A that is treated using an accurate WFT method, and a subsystem B that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT) method. Representation of the interactions between subsystems is non-trivial, and often requires the use of approximate kinetic energy functionals or computationally challenging optimized effective potential calculations; however, it has recently been shown that these challenges can be eliminated through the use of a projection operator. This dissertation describes the development and application of embedding methods that enable accurate and efficient calculation of the properties of large chemical systems.
Chapter 1 introduces a method for efficiently performing projection-based WFT-in-DFT embedding calculations on large systems. This is accomplished by using a truncated basis set representation of the subsystem A wavefunction. We show that naive truncation of the basis set associated with subsystem A can lead to large numerical artifacts, and present an approach for systematically controlling these artifacts.
Chapter 2 describes the application of the projection-based embedding method to investigate the oxidative stability of lithium-ion batteries. We study the oxidation potentials of mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC) by using the projection-based embedding method to calculate the vertical ionization energy (IE) of individual molecules at the CCSD(T) level of theory, while explicitly accounting for the solvent using DFT. Interestingly, we reveal that large contributions to the solvation properties of DMC originate from quadrupolar interactions, resulting in a much larger solvent reorganization energy than that predicted using simple dielectric continuum models. Demonstration that the solvation properties of EC and DMC are governed by fundamentally different intermolecular interactions provides insight into key aspects of lithium-ion batteries, with relevance to electrolyte decomposition processes, solid-electrolyte interphase formation, and the local solvation environment of lithium cations.