5 resultados para Danse noble

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements and modeling of Cu2Se, Ag2Se, and Cu2S show that superionic conductors have great potential as thermoelectric materials. Cu2Se and Ag2Se are predicted to reach a zT of 1.2 at room temperature if their carrier concentrations can be reduced, and Cu-vacancy doped Cu2S reaches a maximum zT of 1.7 at 1000 K. Te-doped Ag2Se achieves a zT of 1.2 at 520 K, and could reach a zT of 1.7 if its carrier concentration could be reduced. However, superionic conductors tend to have high carrier concentrations due to the presence of metal defects. The carrier concentration has been found to be difficult to reduce by altering the defect concentration, therefore materials that are underdoped relative to the optimum carrier concentration are easier to optimize. The results of Te-doping of Ag2Se show that reducing the carrier concentration is possible by reducing the maximum Fermi level in the material.

Two new methods for analyzing thermoelectric transport data were developed. The first involves scaling the temperature-dependent transport data according to the temperature dependences expected of a single parabolic band model and using all of the scaled data to perform a single parabolic band analysis, instead of being restricted to using one data point per sample at a fixed temperature. This allows for a more efficient use of the transport data. The second involves scaling only the Seebeck coefficient and electrical conductivity. This allows for an estimate of the quality factor (and therefore the maximum zT in the material) without using Hall effect data, which are not always available due to time and budget constraints and are difficult to obtain in high-resistivity materials. Methods for solving the coherent potential approximation effective medium equations were developed in conjunction with measurements of the resistivity tensor elements of composite materials. This allows the electrical conductivity and mobility of each phase in the composite to be determined from measurements of the bulk. This points out a new method for measuring the pure-phase electrical properties in impure materials, for measuring the electrical properties of unknown phases in composites, and for quantifying the effects of quantum interactions in composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotopic and elemental abundances of noble gases in the solar system are investigated, using simple mixing models and mass-spectrometric measurements of the noble gases in meteorites and terrestrial rocks and minerals.

Primordial neon is modeled by two isotopically distinct components from the interstellar gas and dust. Neon from the gas dominates solar neon, which contains about ten times more 20Ne than 22Ne. Neon from the dust is represented in meteorites by neon-E, with 20Ne/22Ne less than 0.6. Isotopic variations in meteorites require neon from both dust and gas to be present. Mixing dust and gas without neon loss generates linear correlation lines on three-isotope and composition-concentration diagrams. A model for solar wind implantation predicts small deviations from linear mixing, due to preferential sputtering of the lighter neon isotopes.

Neon in meteorites consists of galactic cosmic ray spallation neon and at least two primordial components, neon-E and neon-S. Neon was measured in several meteorites to investigate these end- members. Cosmogenic neon produced from sodium is found to be strongly enriched in 22Ne. Neon measurements on sodium-rich samples must be interpreted with care so not to confuse this source of 22Ne with neon-E, which is also rich in 22Ne.

Neon data for the carbonaceous chondrite Mokoia show that the end member composition of neon-Si in meteorites is 20Ne/22Ne = 13.7, the same as the present solar wind. The solar wind composition evidently has remained constant since before the compaction of Mokoia.

Ca, Al-rich inclusions from the Allende meteorite were examined for correlation between neon-E and oxygen or magnesium isotopic anomalies. 22Ne and 36Ar enrichments found in some inclusions are attributed to cosmic- ray-induced reactions on Na and Cl, not to a primordial component. Neon-E is not detectably enriched in Allende.

Measurements were made to determine the noble gas contents of various terrestrial rocks and minerals, and to investigate the cycling of noble gases between different terrestrial reservoirs. Beryl crystals contain a characteristic suite of magmatic gases including nucleogenic 21Ne and 22Ne from (α,n) reactions, radiogenic 40Ar, and fissiogenic 131-136Xe from the decay of K and U in the continental crust. Significant concentrations of atmospheric noble gases are also present in beryl.

Both juvenile and atmospheric noble gases are found in rocks from the Skaergaard intrusion. The ratio 40Ar/36Ar (corrected for in situ decay of 40K) correlates with δ18O in plagioclase. Atmospheric argon has been introduced into samples that have experienced oxygen-isotope exchange with circulating meteoric hydrothermal fluids. Unexchanged samples contain juvenile argon with 40Ar/36Ar greater than 6000 that was trapped from the Skaergaard magma.

Juvenile and atmospheric gases have been measured in the glassy rims of mid-ocean ridge (MOR) pillow basalts. Evidence is presented that three samples contain excess radiogenic 129Xe and fission xenon, in addition to the excess radiogenic 40Ar found in all samples. These juvenile gases are being outgassed from the upper-mantle source region of the MOR magma. No isotopic evidence has been found here for juvenile primordial noble gases accompanying the juvenile radiogenic gases in the MOR glasses. Large argon isotopic variations in a single specimen provide a clear indication of the late-stage addition of atmospheric argon, probably from seawater.

The Skaergaard data demonstrate that atmospheric noble gases dissolved in ground water can be transferred into crustal rocks. Subduction of oceanic crust altered by seawater can transport atmospheric noble gases into the upper mantle. A substantial portion of the noble gases in mantle derived rocks may represent subducted gases, not a primordial component as is often assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A critical challenge for the 21st century is shifting from the predominant use of fossil fuels to renewables for energy. Among many options, sunlight is the only single renewable resource with sufficient abundance to replace most or all of our current fossil energy use. However, existing photovoltaic and solar thermal technologies cannot be scaled infinitely due to the temporal and geographic intermittency of sunlight. Therefore efficient and inexpensive methods for storage of solar energy in a dense medium are needed in order to greatly increase utilization of the sun as a primary resource. For this purpose we have proposed an artificial photosynthetic system consisting of semiconductors, electrocatalysts, and polymer membranes to carry out photoelectrochemical water splitting as a method for solar fuel generation.

This dissertation describes efforts over the last five years to develop critical semiconductor and catalyst components for efficient and scalable photoelectrochemical hydrogen evolution, one of the half reactions for water splitting. We identified and developed Ni–Mo alloy and Ni2P nanoparticles as promising earth-abundant electrocatalysts for hydrogen evolution. We thoroughly characterized Ni–Mo alloys alongside Ni and Pt catalysts deposited onto planar and structured Si light absorbers for solar hydrogen generation. We sought to address several key challenges that emerged in the use of non-noble catalysts for solar fuels generation, resulting in the synthesis and characterization of Ni–Mo nanopowder for use in a new photocathode device architecture. To address the mismatch in stability between non-noble metal alloys and Si absorbers, we also synthesized and characterized p-type WSe2 as a candidate light absorber alternative to Si that is stable under acidic and alkaline conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using techniques of rapid quenching from the melt, metastable phases have been obtained in ternary alloys which contain tellurium as a major component and two of the three noble metals (Cu, Ag, Au) as minor components. The metastable phases found in this investigation are either simple cubic or amorphous. The formation of the simple cubic phase is discussed. The electrical resistance and the thermoelectric power of the simple cubic alloy (Au30Te70) have been measured and interpreted in terms of atomic bondings. The semiconducting properties of a metastable amorphous alloy (Au5Cu25Te70) have been measured. The experimental results are discussed in connection with a theoretical consideration of the validity of band theory in an amorphous solid. The existence of extrinsic conduction in an amorphous semiconductor is suggested by the result of electrical resistance and thermoelectric power measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cataphoretic purification of helium was investigated for binary mixtures of He with Ar, Ne, N2, O2, CO, and CO2 in DC glow discharge. An experimental technique was developed to continuously measure the composition in the anode end-bulb without sample withdrawal. Discharge currents ranged from 10 ma to 100 ma. Total gas pressure ranged from 2 torr to 9 torr. Initial compositions of the minority component in He ranged from 1.2 mole percent to 7.5 mole percent.

The cataphoretic separation of Ar and Ne from He was found to be in agreement with previous investigators. The cataphoretic separation of N2, O2, and CO from He was found to be similar to noble gas systems in that the steady-state separation improved with (1) increasing discharge current, (2) increasing gas pressure, and (3) decreasing initial composition of the minority component. In the He-CO2 mixture, the CO2 dissociated to CO plus O2. The fraction of CO2 dissociated was directly proportional to the current and pressure and independent of initial composition.

The experimental results for the separation of Ar, Ne, N2, O2, and CO from He were interpreted in the framework of a recently proposed theoretical model involving an electrostatic Peclet number. In the model the electric field was assumed to be constant. This assumption was checked experimentally and the maximum variation in electric field was 35% in time and 30% in position. Consequently, the assumption of constant electric field introduced no more than 55% variation in the electrostatic Peclet number during a separation.

To aid in the design of new cataphoretic systems, the following design criteria were developed and tested in detail: (1) electric field independent of discharge current, (2) electric field directly proportional to total pressure, (3) ion fraction of impurity directly proportional to discharge current, and (4) ion fraction of impurity independent of total pressure. Although these assumptions are approximate, they enabled the steady-state concentration profile to be predicted to within 25% for 75% of the data. The theoretical model was also tested with respect to the characteristic time associated with transient cataphoresis. Over 80% of the data was within a factor of two of the calculated characteristic times.

The electrostatic Peclet number ranged in value from 0.13 to 4.33. Back-calculated ion fractions of the impurity component ranged in value from 4.8x10-6 to 178x10-6.