2 resultados para Danio rerio

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work in this thesis develops two types of microimplants for the application of cardiovascular in vivo biomedical sensing, one for short-term diagnosis and the other for long-term monitoring.

Despite advances in diagnosis and therapy, atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in the Western world. Predicting metabolically active atherosclerotic plaques has remained an unmet clinical need. A stretchable impedance sensor manifested as a pair of quasi-concentric microelectrodes was developed to detect unstable intravascular. By integrating the impedance sensor with a cardiac catheter, high-resolution Electrochemical Impedance Spectroscopy (EIS) measurements can be conducted during cardiac catheterization. An inflatable silicone balloon is added to the sensor to secure a well-controlled contact with the plaque under test in vivo. By deploying the device to the explants of NZW rabbit aorta and live animals, distinct EIS measurements were observed for unstable atherosclerotic plaques that harbored active lipids and inflammatory cells.

On the other hand, zebrafish (Danio rerio) is an emerging genetic model for heart regenerative medicine. In humans, myocardial infarction results in the irreversible loss of cardiomyocytes. Zebrafish hearts can fully regenerate after two months with 20% ventricular resection. Long-term electrocardiogram (ECG) recording can characterize the heart regeneration in a functional dimension. A flexible microelectrode membrane was developed to be percutaneously implanted onto a zebrafish heart and record epicardial ECG signals from specific regions on it. Region-specific aberrant cardiac signals were obtained from injured and regenerated hearts. Following that, in order to achieve continuous and wireless recording from non-sedated and non-restricted small animal models, a wireless ECG recording system was designed for the microelectrode membrane, prototyped on a printed circuit board and demonstrated on a one-day-old neonatal mouse. Furthermore, a flexible and compact parylene C printed circuit membrane was used as the integration platform for the wireless ECG recording electronics. A substantially miniature wireless ECG recording system was achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Every day, we shift among various states of sleep and arousal to meet the many demands of our bodies and environment. A central puzzle in neurobiology is how the brain controls these behavioral states, which are essential to an animal's well-being and survival. Mammalian models have predominated sleep and arousal research, although in the past decade, invertebrate models have made significant contributions to our understanding of the genetic underpinnings of behavioral states. More recently, the zebrafish (Danio rerio), a diurnal vertebrate, has emerged as a promising model system for sleep and arousal research.

In this thesis, I describe two studies on sleep/arousal pathways that I conducted using zebrafish, and I discuss how the findings can be combined in future projects to advance our understanding of vertebrate sleep/arousal pathways. In the first study, I discovered a neuropeptide that regulates zebrafish sleep and arousal as a result of a large-scale effort to identify molecules that regulate behavioral states. Taking advantage of facile zebrafish genetics, I constructed mutants for the three known receptors of this peptide and identified the one receptor that exclusively mediates the observed behavioral effects. I further show that the peptide exerts its behavioral effects independently of signaling at a key module of a neuroendocrine signaling pathway. This finding contradicts the hypothesis put forth in mammalian systems that the peptide acts through the classical neuroendocrine pathway; our data further generate new testable hypotheses for determining the central nervous system or alternative neuroendocrine pathways involved.

Second, I will present the development of a chemigenetic method to non-invasively manipulate neurons in the behaving zebrafish. I validated this technique by expressing and inducing the chemigenetic tool in a restricted population of sleep-regulating neurons in the zebrafish. As predicted by established models of this vertebrate sleep regulator, chemigenetic activation of these neurons induced hyperactivity, whereas chemigenetic ablation of these neurons induced increased sleep behavior. Given that light is a potent modulator of behavior in zebrafish, our proof-of-principle data provide a springboard for future studies of sleep/arousal and other light-dependent behaviors to interrogate genetically-defined populations of neurons independently of optogenetic tools.